Line 1: Line 1:
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
 
----
 
----
 
 
== Spectral Analysis of 2D Signals (Nov.16) ==
 
== Spectral Analysis of 2D Signals (Nov.16) ==
  
 
This recitation covers the material from Nov. 4 to Nov. 13.  So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform.
 
This recitation covers the material from Nov. 4 to Nov. 13.  So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform.
 
 
In 1D, we have:
 
In 1D, we have:
 
*<math>X(f) = \int{x(t)e^{-j2\pi ft} dt } </math>
 
*<math>X(f) = \int{x(t)e^{-j2\pi ft} dt } </math>
 
*<math>x(t) = \int{X(2\pi f)e^{j2\pi ft} df } </math>
 
*<math>x(t) = \int{X(2\pi f)e^{j2\pi ft} df } </math>
 
 
Similarily, in2D, we have:
 
Similarily, in2D, we have:
 
*Forward transform- <math>F(u,v) = \int{f(x,y)e^{-j2\pi(ux+vy)} dxdy } </math>                     
 
*Forward transform- <math>F(u,v) = \int{f(x,y)e^{-j2\pi(ux+vy)} dxdy } </math>                     
 
*Inverse transform- <math>f(x,y) = \int{F(u,v)e^{j2\pi(ux+vy)} dudv } </math>                         
 
*Inverse transform- <math>f(x,y) = \int{F(u,v)e^{j2\pi(ux+vy)} dudv } </math>                         
 
 
Like 1D signals, properties  such as the linearity, the shifting property, and so on, remained the same in 2D signals.
 
Like 1D signals, properties  such as the linearity, the shifting property, and so on, remained the same in 2D signals.
 
 
*'''Linearity:'''<math>\displaystyle af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) </math>
 
*'''Linearity:'''<math>\displaystyle af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) </math>
 
*'''Scaling:<math>f(\frac{x}{a},\frac{y}{b})--------------CSFT--------|ab|F(au,bv)</math>'''
 
*'''Scaling:<math>f(\frac{x}{a},\frac{y}{b})--------------CSFT--------|ab|F(au,bv)</math>'''
Line 24: Line 18:
 
*'''Parseval’s relation:<math>\int{|f(x,y)|^2dxdy }=\int{|F(u,v)|^2dudv } </math>'''
 
*'''Parseval’s relation:<math>\int{|f(x,y)|^2dxdy }=\int{|F(u,v)|^2dudv } </math>'''
 
*'''Initial value: <math>F(0,0)=\int{f(x,y)dxdy } </math>'''
 
*'''Initial value: <math>F(0,0)=\int{f(x,y)dxdy } </math>'''
+
*'''If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.'''
Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals.
+
  
Given,  
+
Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals. given,  
 
**<math>g(x)-----CSFT-----------G(u)</math>  
 
**<math>g(x)-----CSFT-----------G(u)</math>  
 
**<math>h(y)---- CSFT-----------H(v)</math>  
 
**<math>h(y)---- CSFT-----------H(v)</math>  
 
**<math>f(x,y)-- CSFT------------F(u,v)</math>  
 
**<math>f(x,y)-- CSFT------------F(u,v)</math>  
 
 
If a function can be rewritten as <math>\displaystyle f(x,y)=g(x)h(y)</math>; then, its fourier transform is <math>\displaystyle    F(u,v)=G(u)H(v) </math>.
 
If a function can be rewritten as <math>\displaystyle f(x,y)=g(x)h(y)</math>; then, its fourier transform is <math>\displaystyle    F(u,v)=G(u)H(v) </math>.
 
 
*For example,  <math>\displaystyle rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v)</math>
 
*For example,  <math>\displaystyle rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v)</math>
 
 
*Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot,      keep the top view as a base, making the height as 1. The plot is a cube.  Similar as  sinc(u,v).
 
*Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot,      keep the top view as a base, making the height as 1. The plot is a cube.  Similar as  sinc(u,v).
 
 
Another special function is the circ function and the jinc function.
 
Another special function is the circ function and the jinc function.
 
*<math>\displaystyle circ(x,y)------------CSFT----------------jinc(u,v)</math>
 
*<math>\displaystyle circ(x,y)------------CSFT----------------jinc(u,v)</math>
 
 
*Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.
 
*Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.
 
 
Other important transform pairs:
 
Other important transform pairs:
 
*<math> \delta (x,y)---CSFT---1</math>
 
*<math> \delta (x,y)---CSFT---1</math>
Line 48: Line 35:
 
*<math> 1---CSFT--- \delta (u,v)</math>
 
*<math> 1---CSFT--- \delta (u,v)</math>
  
*<math> rect(x)---CSFT---sinc(u) \delta (v)</math>
+
*<math> rect(x)---CSFT---sinc(u) \delta (v)</math>
  
 
*<math>\delta (x)--CSFT---\delta (v) </math>
 
*<math>\delta (x)--CSFT---\delta (v) </math>
Line 54: Line 41:
 
*<math> e^{j2\pi(u_ox+v_oy)}---CSFT--- \delta (u-u_o,v-v_o)</math>
 
*<math> e^{j2\pi(u_ox+v_oy)}---CSFT--- \delta (u-u_o,v-v_o)</math>
 
*<math> cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] </math>
 
*<math> cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] </math>
 +
<math> \displaystyle Convolution Theorem</math>
 +
*<math>f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) </math>
 +
<math> \displaystyle Product Theorem</math>
 +
*<math>f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v) </math>
  
Other representations of 2D signals:
+
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
I will come back later!
+

Revision as of 16:40, 16 November 2009

Back to ECE438 course page


Spectral Analysis of 2D Signals (Nov.16)

This recitation covers the material from Nov. 4 to Nov. 13. So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform. In 1D, we have:

  • $ X(f) = \int{x(t)e^{-j2\pi ft} dt } $
  • $ x(t) = \int{X(2\pi f)e^{j2\pi ft} df } $

Similarily, in2D, we have:

  • Forward transform- $ F(u,v) = \int{f(x,y)e^{-j2\pi(ux+vy)} dxdy } $
  • Inverse transform- $ f(x,y) = \int{F(u,v)e^{j2\pi(ux+vy)} dudv } $

Like 1D signals, properties such as the linearity, the shifting property, and so on, remained the same in 2D signals.

  • Linearity:$ \displaystyle af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) $
  • Scaling:$ f(\frac{x}{a},\frac{y}{b})--------------CSFT--------|ab|F(au,bv) $
  • Shifting: $ f(x-x_o,y-y_o)------------CSFT-------F(u,v)e^{-j2\pi(ux_o+vy_o)} $
  • Modulation:$ f(x,y)e^{j2\pi(xu_o+yv_o)}----------CSFT---------F(u-u_o,v-v_o) $
  • Reciprocity:$ \displaystyle F(x,y)-------------CSFT ------f(-u,-v) $
  • Parseval’s relation:$ \int{|f(x,y)|^2dxdy }=\int{|F(u,v)|^2dudv } $
  • Initial value: $ F(0,0)=\int{f(x,y)dxdy } $
  • If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.

Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals. given,

    • $ g(x)-----CSFT-----------G(u) $
    • $ h(y)---- CSFT-----------H(v) $
    • $ f(x,y)-- CSFT------------F(u,v) $

If a function can be rewritten as $ \displaystyle f(x,y)=g(x)h(y) $; then, its fourier transform is $ \displaystyle F(u,v)=G(u)H(v) $.

  • For example, $ \displaystyle rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v) $
  • Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).

Another special function is the circ function and the jinc function.

  • $ \displaystyle circ(x,y)------------CSFT----------------jinc(u,v) $
  • Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.

Other important transform pairs:

  • $ \delta (x,y)---CSFT---1 $
  • $ 1---CSFT--- \delta (u,v) $
  • $ rect(x)---CSFT---sinc(u) \delta (v) $
  • $ \delta (x)--CSFT---\delta (v) $
  • $ e^{j2\pi(u_ox+v_oy)}---CSFT--- \delta (u-u_o,v-v_o) $
  • $ cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] $

$ \displaystyle Convolution Theorem $

  • $ f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) $

$ \displaystyle Product Theorem $

  • $ f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v) $

Back to ECE438 course page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva