Line 25: Line 25:
 
For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N
 
For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N
  
<math>ax_1[n] + bx_2[n] \longrightarrow aX_1[k] + bX_2[k]</math>
+
<math>ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k]</math>
 +
 
  
 
'''Time-Shifting'''
 
'''Time-Shifting'''
Line 31: Line 32:
 
For all <math>n_0</math> included in Z, and all x[n] with period N
 
For all <math>n_0</math> included in Z, and all x[n] with period N
  
<math>x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k}</math>
+
<math>x[n - n_0] \longleftrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k}</math>
 +
 
  
 
'''Modulation'''
 
'''Modulation'''
  
<math>x[n]e^{j \frac{2 \pi}{N}k_0n} \longrightarrow X[k-k_0]</math>
+
<math>x[n]e^{j \frac{2 \pi}{N}k_0n} \longleftrightarrow X[k-k_0]</math>
 +
 
  
 
'''Duality'''
 
'''Duality'''
  
<math>X[n] \longrightarrow Nx[-k]</math>, where X[n] is the DFT of a DFT
+
<math>X[n] \longleftrightarrow Nx[-k]</math>, where X[n] is the DFT of a DFT
 +
 
  
 
'''Parseval's Relation'''
 
'''Parseval's Relation'''
  
 
<math>\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2</math>
 
<math>\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2</math>
 +
  
 
'''Initial Value'''
 
'''Initial Value'''
  
 
<math>\sum_{n=0}^{N-1} x[n] = X[0]</math>
 
<math>\sum_{n=0}^{N-1} x[n] = X[0]</math>
 +
  
 
'''Periodicity'''
 
'''Periodicity'''
  
 
<math>X[k + N] = X[k]</math> for all k.  X[k] is periodic with the same period N as x[n].
 
<math>X[k + N] = X[k]</math> for all k.  X[k] is periodic with the same period N as x[n].
 +
  
 
'''Relation to DTFT'''
 
'''Relation to DTFT'''
Line 61: Line 68:
 
== Important DFT Pairs ==
 
== Important DFT Pairs ==
  
 +
* <math>x[n] = \delta [n], 0 \le n < N \longleftrightarrow X[k] = 1, 0 \le k \le N</math> both repeat with period N
 +
 +
* <math>x[n] = 1, 0 \le n < N \longleftrightarrow X[k] = N \delta [n], 0 \le k < N</math> both repeat with period N
 +
</math>
 +
 +
* <math>x[n] = e^{j2 \pi k_0n}, 0 \le n < N \longleftrightarrow  X[k] = N \delta [k-k_0], 0 \le k < N</math> both repeat with period N
 +
 +
* <math>x[n] = cos( \frac{2 \pi}{N} k_0n) \longleftrightarrow \frac{N}{N}(\delta [k-k_0] + \delta[l-(N-k_0)], 0 \le k < N</math> both repeat with period N
  
  

Revision as of 07:37, 28 September 2009


DFT ( Discrete Fourier Transform )

The DFT is a finite sum, so it can be computed using a computer. Used for discrete, time-limited signals, or discrete periodic signals. The DFT of a signal will be discrete and have a finite duration.


Definition

DFT

  • $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT)

  • $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, n = 0, 1, 2, ..., N-1 $


Properties

Linearity

For all $ a,b $ in the complex plane, and all $ x_1[n],x_2[n] $ with the same period N

$ ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] $


Time-Shifting

For all $ n_0 $ included in Z, and all x[n] with period N

$ x[n - n_0] \longleftrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k} $


Modulation

$ x[n]e^{j \frac{2 \pi}{N}k_0n} \longleftrightarrow X[k-k_0] $


Duality

$ X[n] \longleftrightarrow Nx[-k] $, where X[n] is the DFT of a DFT


Parseval's Relation

$ \sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2 $


Initial Value

$ \sum_{n=0}^{N-1} x[n] = X[0] $


Periodicity

$ X[k + N] = X[k] $ for all k. X[k] is periodic with the same period N as x[n].


Relation to DTFT

$ X[k] = Y(k \frac{ 2 \pi}{N}) $ where Y(w) is the DTFT of signal $ y[n] = (^{x[n], n=0,...,N-1}_{0, else} $


Important DFT Pairs

  • $ x[n] = \delta [n], 0 \le n < N \longleftrightarrow X[k] = 1, 0 \le k \le N $ both repeat with period N
  • $ x[n] = 1, 0 \le n < N \longleftrightarrow X[k] = N \delta [n], 0 \le k < N $ both repeat with period N

</math>

  • $ x[n] = e^{j2 \pi k_0n}, 0 \le n < N \longleftrightarrow X[k] = N \delta [k-k_0], 0 \le k < N $ both repeat with period N
  • $ x[n] = cos( \frac{2 \pi}{N} k_0n) \longleftrightarrow \frac{N}{N}(\delta [k-k_0] + \delta[l-(N-k_0)], 0 \le k < N $ both repeat with period N



Back to ECE438 course page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett