Line 22: Line 22:
  
 
'''Linearity'''
 
'''Linearity'''
 +
 
For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N
 
For all <math>a,b</math> in the complex plane, and all <math>x_1[n],x_2[n]</math> with the same period N
  
Line 27: Line 28:
  
 
'''Time-Shifting'''
 
'''Time-Shifting'''
 +
 
For all <math>n_0</math> included in Z, and all x[n] with period N
 
For all <math>n_0</math> included in Z, and all x[n] with period N
  
 
<math>x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k}</math>
 
<math>x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k}</math>
 +
 +
'''Modulation'''
 +
 +
<math>x[n]e^{j \frac{2 \pi}{N}k_0n} \longrightarrow X[k-k_0]</math>
 +
 +
'''Duality'''
 +
 +
<math>X[n] \longrightarrow Nx[-k]</math>, where X[n] is the DFT of a DFT
 +
 +
'''Parseval's Relation'''
 +
 +
<math>\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2</math>
 +
 +
'''Initial Value'''
 +
 +
<math>\sum_{n=0}^{N-1} x[n] = X[0]</math>
 +
 +
'''Periodicity'''
 +
 +
<math>X[k + N] = X[k]</math> for all k.  X[k] is periodic with the same period N as x[n].
 +
 +
'''Relation to DTFT'''
 +
 +
<math>X[k] = Y(k \frac{ 2 \pi}{N})</math> where Y(w) is the DTFT of signal <math>y[n] = (^{x[n], n=0,...,N-1}_{0, else}</math>
 +
 +
----
 +
 +
== Important DFT Pairs ==
 +
 +
 +
 +
  
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
 
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 07:05, 28 September 2009


DFT ( Discrete Fourier Transform )

The DFT is a finite sum, so it can be computed using a computer. Used for discrete, time-limited signals, or discrete periodic signals. The DFT of a signal will be discrete and have a finite duration.


Definition

DFT

  • $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT)

  • $ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, n = 0, 1, 2, ..., N-1 $


Properties

Linearity

For all $ a,b $ in the complex plane, and all $ x_1[n],x_2[n] $ with the same period N

$ ax_1[n] + bx_2[n] \longrightarrow aX_1[k] + bX_2[k] $

Time-Shifting

For all $ n_0 $ included in Z, and all x[n] with period N

$ x[n - n_0] \longrightarrow X[k]e^{-j \frac{2{\pi}}{N} n_0 k} $

Modulation

$ x[n]e^{j \frac{2 \pi}{N}k_0n} \longrightarrow X[k-k_0] $

Duality

$ X[n] \longrightarrow Nx[-k] $, where X[n] is the DFT of a DFT

Parseval's Relation

$ \sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2 $

Initial Value

$ \sum_{n=0}^{N-1} x[n] = X[0] $

Periodicity

$ X[k + N] = X[k] $ for all k. X[k] is periodic with the same period N as x[n].

Relation to DTFT

$ X[k] = Y(k \frac{ 2 \pi}{N}) $ where Y(w) is the DTFT of signal $ y[n] = (^{x[n], n=0,...,N-1}_{0, else} $


Important DFT Pairs

Back to ECE438 course page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang