• A Continuous Time signal is said to be periodic if there exists <math>\ T > 0</math> such that <math A Discrete Time signal is said to be periodic if there exists <math>\ N > 0</math> (where N is an
    1 KB (221 words) - 12:21, 5 September 2008
  • == Periodic Signal Definition == *For a Continuous-time signal
    1 KB (209 words) - 09:49, 5 September 2008
  • For a continuous-time signal <br> ...m_{T \to \infty} {\frac{E(\infty)}{2T}} = 0 ................ Finite-energy Signal</math><br>
    647 B (89 words) - 21:00, 4 September 2008
  • Computation of Signal Energy and power. Source for definition Of Continuous Signal: Wikipedia.
    778 B (99 words) - 13:21, 5 September 2008
  • == For a Continuous Time Signal==
    788 B (127 words) - 12:34, 5 September 2008
  • A periodic signal is one that for a given real number "a": ===Periodic Signal===
    1 KB (195 words) - 07:20, 14 April 2010
  • A signal is periodic if there exists some T>0 such that: A signal is NOT periodic if the converse is true, there DOESN'T exists some T>0 such
    688 B (106 words) - 07:08, 14 April 2010
  • ==Periodic Signal== A continuous time (CT) signal is periodic if it there exists some T such that x(t+T)=x(t) for all t.
    811 B (148 words) - 13:12, 5 September 2008
  • ==Periodic Signal== to prove a CT signal is continuous we must prove that there exists a value T such that x(t) = x(
    388 B (84 words) - 13:37, 5 September 2008
  • '''Changing a Periodic Continuous Time Signal to a Non-Periodic Discrete Time Signal''' ...nsider the continuous time signal <math>x(t)=sin(t)</math>. Plotting this signal yields a smooth waveform that repeats itself with period <math>T=2\pi</math
    3 KB (536 words) - 11:07, 10 September 2008
  • == Continuous to discrete time signal== I used the signal <math>y = cos(n)\,</math> as the signal of my graph
    1 KB (196 words) - 20:31, 10 September 2008
  • === Periodic Continuous Time Signal === ...y people used in Homework 1 for their example of a periodic function. The signal repeats itself at intervals of <math> 2\pi </math>.
    1 KB (196 words) - 11:07, 10 September 2008
  • == CT periodic signal == An example of a periodic signal in continuous time is:
    1 KB (227 words) - 17:24, 10 September 2008
  • I chose to use the CT (continuous time)periodic signal: y(t) = cos(t). The signal can be expressed as both periodic and non-periodic in DT (discrete time).
    809 B (142 words) - 17:35, 10 September 2008
  • A system is called time invariant if for any input signal x(t)(x[n]) and for any t0 belongs to R, the response to the shifted inputX( ...= 10 x(t-t0)where as a system is called time variant when we find an input signal for which the condition of time invariance is violated.
    2 KB (379 words) - 18:38, 10 September 2008
  • ...ework 1 were boring (including mine) so I thought I'd broaden the periodic signal pool. I chose the CT signal: <math>x(t) = |2*cos(.5*t)|</math> . A graph of this signal in continuous time is shown below.
    1 KB (207 words) - 17:25, 11 September 2008
  • <b>Changing a Periodic Continuous Time Signal to a Non-Periodic Discrete Time Signal</b> The signal I chose for this part can be found [[HW1.4 Wei Jian Chan - Periodic and Non
    1 KB (186 words) - 16:07, 11 September 2008
  • 1.This is a sine function of period 2. Function is sin(pi*t). Continuous Signal. 2. '''Periodic DT Signal'''This is the discrete signal of the same function in 1 with sampling time of 0.075. I got the diagram on
    642 B (86 words) - 10:23, 12 September 2008
  • A system is called "'''time invariant'''" if for any input signal x(t) in continuous time or x[n] in discrete time and for any time <math>t_0 A system is called "'''time variant'''" if for any input signal x(t) in continuous time or x[n] in discrete time and for any time <math>t_0
    1 KB (193 words) - 18:59, 18 September 2008
  • == Example of Computation of Fourier series of a CT SIGNAL == ==The Signal==
    2 KB (384 words) - 10:56, 16 September 2013

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009