(New page: testing <math> \mathbb{R} </math>)
 
Line 1: Line 1:
testing <math> \mathbb{R} </math>
+
8.
 +
 
 +
Fix <math>\epsilon > 0</math>.
 +
 
 +
Then <math>\exists \ N</math> such that <math>n>N \Rightarrow \int_X|f_n-f|^p <\epsilon/3</math>.
 +
 
 +
Define <math>f_0=f</math>.
 +
 
 +
Then for <math>i=0,1,...,N \ \exists \ \delta_i>0 </math> such that <math> m(A) <\delta_i \Rightarrow \int_A|f_i|^p<\epsilon/3</math>, since <math>f_i \in L^p</math>.
 +
 
 +
 
 +
Define <math>\delta=min\{\delta_0, \delta_1,...,\delta_N, \epsilon/3\}</math>.
 +
 
 +
Fix A with <math>m(A)<\delta</math>.
 +
 
 +
Note: <math>\int_A|f_n| = \int_{\{x\in A:|f_n|\leq1\}}|f_n|+\int_{\{x\in A:|f_n|>1\}}|f_n| \leq m(A) + \int_A|f_n|^p \leq \epsilon/3 + \int_A|f_n|^p \ \ \forall \ n=0,1,...</math>.
 +
 
 +
Then if n = 1,...,N
 +
 
 +
<math>\int_A|f_n|\leq 2\epsilon/3 < \epsilon</math> (by our choice of <math>\delta</math>).
 +
 
 +
and if
 +
 
 +
n > N
 +
 
 +
then
 +
 
 +
<math>\int_A|f_n|\leq \epsilon/3 + \int_A|f_n|^p\leq \epsilon/3 + \int_A|f|^p+\int_A|f_n-f|^p\leq \epsilon/3 + \int_A|f|^p+\int_X|f_n-f|^p\leq \epsilon</math>.
 +
 
 +
So <math>m(A)<\delta \Rightarrow \int_A|f_n| <\epsilon \ \forall \ n</math>.

Revision as of 20:08, 1 July 2008

8.

Fix $ \epsilon > 0 $.

Then $ \exists \ N $ such that $ n>N \Rightarrow \int_X|f_n-f|^p <\epsilon/3 $.

Define $ f_0=f $.

Then for $ i=0,1,...,N \ \exists \ \delta_i>0 $ such that $ m(A) <\delta_i \Rightarrow \int_A|f_i|^p<\epsilon/3 $, since $ f_i \in L^p $.


Define $ \delta=min\{\delta_0, \delta_1,...,\delta_N, \epsilon/3\} $.

Fix A with $ m(A)<\delta $.

Note: $ \int_A|f_n| = \int_{\{x\in A:|f_n|\leq1\}}|f_n|+\int_{\{x\in A:|f_n|>1\}}|f_n| \leq m(A) + \int_A|f_n|^p \leq \epsilon/3 + \int_A|f_n|^p \ \ \forall \ n=0,1,... $.

Then if n = 1,...,N

$ \int_A|f_n|\leq 2\epsilon/3 < \epsilon $ (by our choice of $ \delta $).

and if

n > N

then

$ \int_A|f_n|\leq \epsilon/3 + \int_A|f_n|^p\leq \epsilon/3 + \int_A|f|^p+\int_A|f_n-f|^p\leq \epsilon/3 + \int_A|f|^p+\int_X|f_n-f|^p\leq \epsilon $.

So $ m(A)<\delta \Rightarrow \int_A|f_n| <\epsilon \ \forall \ n $.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett