(10 intermediate revisions by the same user not shown)
Line 30: Line 30:
 
&= \sum_{n=0}^N \left(\frac{1}{(1+j)(1-j)}\right)^n \\
 
&= \sum_{n=0}^N \left(\frac{1}{(1+j)(1-j)}\right)^n \\
 
&= \sum_{n=0}^N (\frac{1}{2})^n \\
 
&= \sum_{n=0}^N (\frac{1}{2})^n \\
&=\infty. \\
+
&= \frac{1}{1-\frac{1}{2}} \\
 +
&= 2 \\
 
\end{align}</math>  
 
\end{align}</math>  
  
  
So <math>E_{\infty} = \infty</math>.
+
So <math>E_{\infty} = 2</math>
 
+
:<span style="color: green;"> Instructors comment: Good job! The answer is correct and the justification is very clear. Now can someone compute the power? --[[User:Mboutin|Mboutin]] 19:31, 13 January 2011 (UTC)  </span>
+
  
 
<math>\begin{align}
 
<math>\begin{align}
P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |j|^2 \\
+
P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{1}{1+j}\right)^n|^2 \\
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\  
+
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\
+
\text{Similar to math above, the expression can be derived towards}\\
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N (\frac{1}{2})^n \\  
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} \\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}}  \\
&= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}\\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\  
&= \lim_{N\rightarrow \infty}{1}\\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\
&= 1 \\
+
&= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\
 +
&= \frac{2}{\infty}\\
 +
&= 0 \\
  
 
\end{align}</math>  
 
\end{align}</math>  
  
 
   
 
   
  So <math>P_{\infty} = 1</math>.  
+
  So <math>P_{\infty} = 0</math>.  
 
+
--[[User:Rgieseck|Rgieseck]] 21:35, 12 January 2011
+
  
 
=== Answer 2 ===
 
=== Answer 2 ===
Line 65: Line 64:
 
----
 
----
  
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]  
+
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2018 Prof. Boutin]]  
  
 
[[Category:ECE301Spring2018Boutin]]  
 
[[Category:ECE301Spring2018Boutin]]  

Latest revision as of 11:13, 22 January 2018

Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following discrete-time signal

$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{1}{1+j}\right)^n & \text{ if } n>=0,\\  0 & \text{otherwise}. \end{array} \right.  $

Answer 1

$ \begin{align} E_{\infty}&=\sum_{n=0}^N |\left(\frac{1}{1+j}\right)^n|^2 \\ &= \sum_{n=0}^N (\left(\frac{1}{1+j}\right)^n * \left(\frac{1}{1-j}\right)^n) \\ &= \sum_{n=0}^N \left(\frac{1}{(1+j)(1-j)}\right)^n \\ &= \sum_{n=0}^N (\frac{1}{2})^n \\ &= \frac{1}{1-\frac{1}{2}} \\ &= 2 \\ \end{align} $


So $ E_{\infty} = 2 $

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{1}{1+j}\right)^n|^2 \\ \text{Similar to math above, the expression can be derived towards}\\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N (\frac{1}{2})^n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}} \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\ &= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\ &= \frac{2}{\infty}\\ &= 0 \\ \end{align} $


So $ P_{\infty} = 0 $. 

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2018 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang