Line 58: Line 58:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pit)|^2 dt \quad \\
+
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\
 +
 
 +
But <math class="inline">\cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). </math>
 +
 
 +
and therefore <math class="inline">\sin^2x = \frac{1-\cos(2x)}{2}</math>.
 +
 
 
&= \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 1 dt \quad \\
 
&= \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 1 dt \quad \\
 
& = \lim_{T\rightarrow \infty} {1 \over {2T}} t \Big| ^T _{-T} \quad \\
 
& = \lim_{T\rightarrow \infty} {1 \over {2T}} t \Big| ^T _{-T} \quad \\

Revision as of 19:00, 20 January 2018


Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following continuous-time signal

$ x(t)= \sin (2 \pi t) $


What properties of the complex magnitude can you use to check your answer?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1=

$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\ &=\int_{-\infty}^\infty \sin^2(2 \pi t) dt \end{align} $


But $ \cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). $

and therefore $ \sin^2x = \frac{1-\cos(2x)}{2} $.

$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\ &=\int_{-\infty}^\infty \frac{1}{2} dt - \int_{-\infty}^\infty \frac{\cos(4\pi t)}{2} dt \\ &\\ &=\infty \end{align} $


So $ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\ But <math class="inline">\cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). $

and therefore $ \sin^2x = \frac{1-\cos(2x)}{2} $.

&= \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 1 dt \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} t \Big| ^T _{-T} \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} T - {1 \over {2T}} (-T) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2}} + {1 \over {2}} \quad \\ &= 1 \end{align} </math>

So $ P_{\infty} = 1 $.



Answer 2


Back to ECE301 Spring 2018 Prof. Boutin

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal