Line 8: Line 8:
  
 
<math>X(z)=\sum_{n=0}^{\infty}(az^{-1})^{n}=\frac{1}{1-az^{-1}}=\frac{z}{z-a}</math>, <math>\left| z\right|>\left| a\right|</math>
 
<math>X(z)=\sum_{n=0}^{\infty}(az^{-1})^{n}=\frac{1}{1-az^{-1}}=\frac{z}{z-a}</math>, <math>\left| z\right|>\left| a\right|</math>
 +
 +
 +
 +
Now let  <math>x[n]=-a^{n}u[-n-1]</math>
 +
 +
<math>X(z)=-\sum_{n=-\infty}^{\infty}a^{n}u[-n-1]z^{-n}=-\sum_{n=-\infty}^{-1}a^{n}z^{-n}</math>
 +
 +
<math>=-\sum_{n=1}^{\infty}a^{-n}z^{n}=1-\sum_{n=0}^{\infty}(a^{-1}z)^{n}</math>
 +
 +
<math>\left| a^{-1}z\right|<1</math>, or equivalently math>\left| z\right|<\left| a\right|</math>

Revision as of 19:58, 3 December 2008

Consider the signal $ x[n]=a^{n}u[n] $

$ X(z)=\sum_{n=-\infty}^{\infty}a^{n}u[n]z^{-n}=\sum_{n=0}^{\infty}(az^{-1})^{n} $

for convergence,

$ \left| az^{-1}\right|<1 $, or equivalently $ \left| z\right|>\left| a\right| $

$ X(z)=\sum_{n=0}^{\infty}(az^{-1})^{n}=\frac{1}{1-az^{-1}}=\frac{z}{z-a} $, $ \left| z\right|>\left| a\right| $


Now let $ x[n]=-a^{n}u[-n-1] $

$ X(z)=-\sum_{n=-\infty}^{\infty}a^{n}u[-n-1]z^{-n}=-\sum_{n=-\infty}^{-1}a^{n}z^{-n} $

$ =-\sum_{n=1}^{\infty}a^{-n}z^{n}=1-\sum_{n=0}^{\infty}(a^{-1}z)^{n} $

$ \left| a^{-1}z\right|<1 $, or equivalently math>\left| z\right|<\left| a\right|</math>

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett