Line 13: Line 13:
  
 
In our textbook(Signal and System,second edition,oppenheim), If we look up p328 and p329,  they have very useful Table for Fourier Properties and Basic Fourier Transform Pairs.
 
In our textbook(Signal and System,second edition,oppenheim), If we look up p328 and p329,  they have very useful Table for Fourier Properties and Basic Fourier Transform Pairs.
 +
 +
 +
for the DT Fourier Transform, it also has two important equations that we have to know which are,
 +
 +
<math>x[n]=\frac{1}{2\pi}\int_{2\pi}X(e^{j\omega})e^{j\omega n}d\omega</math>
 +
 +
<math>X(e^{j\omega}) = \sum_{n =-\infty}^{\infty} x[n]e^{-j\omega n}</math>

Revision as of 09:16, 23 October 2008

Brief explanation about Fourier Transform

for the CT Fourier Transform, there are two important formulas that we have to know which are,

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}X(\omega)e^{j\omega t} d\omega $

and

$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

Above equations are referred to as the Fourier transform pair.

$ X(\omega) $ stands for Fourier Transform and the first equation is inverse Fourier transform equation.

In our textbook(Signal and System,second edition,oppenheim), If we look up p328 and p329, they have very useful Table for Fourier Properties and Basic Fourier Transform Pairs.


for the DT Fourier Transform, it also has two important equations that we have to know which are,

$ x[n]=\frac{1}{2\pi}\int_{2\pi}X(e^{j\omega})e^{j\omega n}d\omega $

$ X(e^{j\omega}) = \sum_{n =-\infty}^{\infty} x[n]e^{-j\omega n} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett