(System Characterized By Linear Constant-Coefficient Differential Equations)
(Example)
Line 25: Line 25:
  
 
<math>x(t)=e^{-t}u(t)</math>
 
<math>x(t)=e^{-t}u(t)</math>
 +
 +
<math> Y(jw)=H(jw)X(jw)=[\frac{jw+2}{(jw+1)(jw+3)}][\frac{1}{jw+1}]</math>

Revision as of 17:42, 24 October 2008

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

$ Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)} $

Example

Consider a LTI system that is chracterized by the differential equation


$ \frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t) = \frac{dx(t)}{dt}+2x(t) $


$ H(jw)=\frac{(jw)+2}{(jw)^2+4(jw)+3} $


$ H(jw)=\frac{jw+2}{(jw+1)(jw+3)} $

$ H(jw)=\frac{\frac{1}{2}}{jw+1} + \frac{\frac{1}{2}}{jw+3} $

$ h(t)=\frac{1}{2}e^{-t}u(t)+\frac{1}{2}e^{-3t}u(t) $


Consider the system above, and suppose that the input is

$ x(t)=e^{-t}u(t) $

$ Y(jw)=H(jw)X(jw)=[\frac{jw+2}{(jw+1)(jw+3)}][\frac{1}{jw+1}] $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal