(System Characterized By Linear Constant-Coefficient Differential Equations)
(Example)
Line 4: Line 4:
 
=<math>Y(jw)=H(jw)X(jw),  H(jw)=\frac{Y(jw)}{X(jw)}</math>
 
=<math>Y(jw)=H(jw)X(jw),  H(jw)=\frac{Y(jw)}{X(jw)}</math>
 
== Example ==
 
== Example ==
 +
 +
<math> \frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t) = \frac{dx(t)}{dt}+2x(t)</math>

Revision as of 17:31, 24 October 2008

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

=$ Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)} $

Example

$ \frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t) = \frac{dx(t)}{dt}+2x(t) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood