(Blanked the page)
 
Line 1: Line 1:
=A Review on Reparametrizing=
 
  
Over the past years in math, I've seen many different methods for reparametrizing variables as a way to make a complex integral easier to deal with. Essentially we just take a function of some value and differentiate it with respect to a different variable, creating newer, simpler functions. One application of this includes u-substitution, where we let an arbitrary variable (in this case "u") represent a portion of our integral. For example, let's take this integral:
 
<center><math> \int {(sin{(x)})*(cos{(x)})} dx</math></center>
 
To solve this, we would simply let our new variable "u" equal <math>sin{(x)}</math> and differentiate both sides, resulting in an equation with <math> du = cos{(x)} dx </math>. We can then proceed to use this as a substitution for dx, changing our integral to <math> \int {sin{(u)} du}</math>, which is much easier to compute.
 
 
While u-substitution is the clearest example of parametrization, we even see it appear in surface integrals. This concept is extremely useful, especially with complex integrals, and it plays a major role in an integration technique known as Feynman's technique.
 
 
[[ Walther MA271 Fall2020 topic14 | Back to Feynman Integrals]]
 

Latest revision as of 20:34, 30 November 2020

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva