(One intermediate revision by the same user not shown)
Line 5: Line 5:
 
----
 
----
 
Recall that
 
Recall that
*The Discrete-time Fourier transform (CTFT) is <math>{\mathcal X}(\omega) = {\mathcal F} \left( x[n] \right) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}</math>.
+
*The Discrete-time Fourier transform (DTFT) is <math>{\mathcal X}(\omega) = {\mathcal F} \left( x[n] \right) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}</math>.
 
*The z-transform is <math>X(z)= {\mathcal Z} \left( x[n] \right)= \sum_{n=-\infty}^\infty x[n] z^{-n}</math>
 
*The z-transform is <math>X(z)= {\mathcal Z} \left( x[n] \right)= \sum_{n=-\infty}^\infty x[n] z^{-n}</math>
 
----
 
----
 
'''1. One can obtain the  DTFT from the z-transform X(z) by as follows:'''
 
'''1. One can obtain the  DTFT from the z-transform X(z) by as follows:'''
  
<center><math>\left. X(z)\right|_{z=e^{jw}} = X(e^{jw}) </math></center>
+
<center><math>\left. X(z)\right|_{z=e^{jw}} = {\mathcal X}(\omega) </math></center>
  
 
In other words, if you restrict the z-transoform to the unit circle in the complex plane, then you get the Fourier transform (DTFT).
 
In other words, if you restrict the z-transoform to the unit circle in the complex plane, then you get the Fourier transform (DTFT).

Latest revision as of 14:49, 1 May 2015


Relationship between DTFT and z-transform


Recall that

  • The Discrete-time Fourier transform (DTFT) is $ {\mathcal X}(\omega) = {\mathcal F} \left( x[n] \right) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n} $.
  • The z-transform is $ X(z)= {\mathcal Z} \left( x[n] \right)= \sum_{n=-\infty}^\infty x[n] z^{-n} $

1. One can obtain the DTFT from the z-transform X(z) by as follows:

$ \left. X(z)\right|_{z=e^{jw}} = {\mathcal X}(\omega) $

In other words, if you restrict the z-transoform to the unit circle in the complex plane, then you get the Fourier transform (DTFT).

2. One can also obtain the Z-Transform from the DTFT.

Write the z-transform $ X(z)=X(re^{jw}) $ using polar coordinates for the complex number z. Then


$ \begin{align} X(z)&= \sum_{-\infty}^\infty x[n]z^{-n}\\ & = \sum_{-\infty}^\infty x[n](re^{jw})^{-n} \\ & = \sum_{-\infty}^\infty x[n]r^{-n}e^{-jwn} \\ & = {\mathcal F} \left( x[n]r^{-n} \right) \end{align} $

So the z-transform is like a DTFT after multiplying the signal by the signal $ y[n]=r^{-n} $.


Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang