(New page: <math>X(w) = F{x[n]} = \sum_{n=-\infty}^\infty x[n]e^{-jwn}</math> <math>X(z)|_{z=e^{jw}} = X(e^{jw})</math> Can compute Z-Transform as a DTFT write <math>X(z)=X(re^{jw})</math> then <m...)
 
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<math>X(w) = F{x[n]} = \sum_{n=-\infty}^\infty x[n]e^{-jwn}</math>
+
[[Category:discrete-time Fourier transform]]
 +
[[Category:z-transform]]
  
<math>X(z)|_{z=e^{jw}} = X(e^{jw})</math>
+
=Relationship between [[Discrete-time_Fourier_transform_info|DTFT]] and [[Info_z-transform|z-transform]]=
 +
----
 +
Recall that
 +
*The Discrete-time Fourier transform (DTFT) is <math>{\mathcal X}(\omega) = {\mathcal F} \left( x[n] \right) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}</math>.
 +
*The z-transform is <math>X(z)= {\mathcal Z} \left( x[n] \right)= \sum_{n=-\infty}^\infty x[n] z^{-n}</math>
 +
----
 +
'''1. One can obtain the  DTFT from the z-transform X(z) by as follows:'''
  
Can compute Z-Transform as a DTFT
+
<center><math>\left. X(z)\right|_{z=e^{jw}} = {\mathcal X}(\omega) </math></center>
write <math>X(z)=X(re^{jw})</math>
+
  
then <math>X(z)= \sum_{-\infty}^\infty x[n]z^{-n}</math>
+
In other words, if you restrict the z-transoform to the unit circle in the complex plane, then you get the Fourier transform (DTFT).
  
<math>X(z)= \sum_{-\infty}^\infty x[n](re^{jw})^{-n}</math>
+
'''2. One can also obtain the Z-Transform from the DTFT'''.
  
<math>X(z)= \sum_{-\infty}^\infty x[n]r^{-n}e^{-jwn}</math>
+
Write the z-transform <math>X(z)=X(re^{jw})</math> using polar coordinates for the complex number z. Then
  
<math> = F{x[n]r^{-n}}</math>
+
 
 +
<math>\begin{align} X(z)&= \sum_{-\infty}^\infty x[n]z^{-n}\\
 +
& = \sum_{-\infty}^\infty x[n](re^{jw})^{-n} \\
 +
& = \sum_{-\infty}^\infty x[n]r^{-n}e^{-jwn} \\
 +
& = {\mathcal F} \left( x[n]r^{-n} \right)
 +
\end{align}</math>
 +
 
 +
So the z-transform is like a DTFT after multiplying the signal by the signal <math>y[n]=r^{-n}</math>.
 +
----

Latest revision as of 14:49, 1 May 2015


Relationship between DTFT and z-transform


Recall that

  • The Discrete-time Fourier transform (DTFT) is $ {\mathcal X}(\omega) = {\mathcal F} \left( x[n] \right) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n} $.
  • The z-transform is $ X(z)= {\mathcal Z} \left( x[n] \right)= \sum_{n=-\infty}^\infty x[n] z^{-n} $

1. One can obtain the DTFT from the z-transform X(z) by as follows:

$ \left. X(z)\right|_{z=e^{jw}} = {\mathcal X}(\omega) $

In other words, if you restrict the z-transoform to the unit circle in the complex plane, then you get the Fourier transform (DTFT).

2. One can also obtain the Z-Transform from the DTFT.

Write the z-transform $ X(z)=X(re^{jw}) $ using polar coordinates for the complex number z. Then


$ \begin{align} X(z)&= \sum_{-\infty}^\infty x[n]z^{-n}\\ & = \sum_{-\infty}^\infty x[n](re^{jw})^{-n} \\ & = \sum_{-\infty}^\infty x[n]r^{-n}e^{-jwn} \\ & = {\mathcal F} \left( x[n]r^{-n} \right) \end{align} $

So the z-transform is like a DTFT after multiplying the signal by the signal $ y[n]=r^{-n} $.


Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett