Line 160: Line 160:
 
=== Related Problem  ===
 
=== Related Problem  ===
  
1. In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <span class="texhtml">λ</span>. Here the color matching allows for color to be subtracted from the reference color. At each wavelength <span class="texhtml">λ</span>, the matching color is given by  
+
In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength <math>\lambda</math>. (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.)
 +
At each wavelength <math>\lambda </math>, the matching color is given by  
  
<math>
+
<math>\left[ \begin{matrix}
\left[ {\begin{array}{*{20}{c}}
+
  R, & G, & B \\
R, G, B
+
\end{matrix} \right]\left[ \begin{matrix}
\end{array}} \right]
+
  r(\lambda ) \\
\left[ {\begin{array}{*{20}{c}}
+
  g(\lambda ) \\
r(\lambda)\\
+
  b(\lambda ) \\
g(\lambda)\\
+
\end{matrix} \right]</math>
b(\lambda)
+
\end{array}} \right]
+
where
</math>  
+
  
where <span class="texhtml">''r''<sub>(</sub>λ)</span>, <span class="texhtml">''g''<sub>(</sub>λ)</span>, and <span class="texhtml">''b''<sub>(</sub>λ)</span> are normalized to 1.  
+
<math>\begin{align}
 +
  & 1=\int\limits_{0}^{\infty }{r(\lambda )d\lambda } \\
 +
& 1=\int\limits_{0}^{\infty }{g(\lambda )d\lambda } \\
 +
& 1=\int\limits_{0}^{\infty }{b(\lambda )d\lambda } \\
 +
\end{align}$
 +
Further define the white point
 +
$W=\left[ \begin{matrix}
 +
  R, & G, & B  \\
 +
\end{matrix} \right]\left[ \begin{matrix}
 +
  {{r}_{w}}  \\
 +
  {{g}_{w}}  \\
 +
  {{b}_{w}}  \\
 +
\end{matrix} \right]</math>.  
  
Further define the white point
+
Let <math>I(\lambda)</math>  be the light reflected from a surface.
  
<math> W = 
+
a) Calculate <math>({{r}_{e}},\ {{g}_{e}},\ {{b}_{e}})</math> the tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and an equal energy white point.
\left[ {\begin{array}{*{20}{c}}
+
R, G, B
+
\end{array}} \right]
+
\left[ {\begin{array}{*{20}{c}}
+
r_w\\
+
g_w\\
+
b_w
+
\end{array}} \right]
+
</math>  
+
  
Let <span class="texhtml">''I''(λ)</span> be the light reflected from a surface.  
+
b) Calculate <math>({{r}_{c}},\ {{g}_{c}},\ {{b}_{c}})</math> the tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and white point $({{r}_{w}},{{g}_{w}},{{b}_{w}})$.
 +
c) Calculate <math>({{r}_{\gamma }},\ {{g}_{\gamma }},\ {{b}_{\gamma }})</math> the gamma corrected tristimulus values for the spectral distribution <math>I(\lambda)</math> using primaries R, G, B and white point <math>({{r}_{w}},\ {{g}_{w}},\ {{b}_{w}})</math>, and <math>\gamma =2.2</math>.
  
a) Calculate <span class="texhtml">(''r''<sub>''e''</sub>,''g''<sub>''e''</sub>,''b''<sub>''e''</sub>)</span> the tristimulus values for the spectral distribution <span class="texhtml">''I''(λ)</span> using primaries <span class="texhtml">''R'',''G'',''B''</span> and an equal energy white point.
 
 
b) Calculate <span class="texhtml">(''r''<sub>''c''</sub>,''g''<sub>''c''</sub>,''b''<sub>''c''</sub>)</span> the tristimulus values for the spectral distribution <span class="texhtml">''I''(λ)</span> using primaries <span class="texhtml">''R'',''G'',''B''</span> and white point <span class="texhtml">(''r''<sub>''w''</sub>,''g''<sub>''w''</sub>,''b''<sub>''w''</sub>)</span>.
 
 
(Refer to ECE637 2004 Final Problem 4.)
 
 
2. Consider the two channel sensors with response function&nbsp;<span class="texhtml">''Q''<sub>''S''</sub>(λ)&nbsp;''a'''n'''d&nbsp;'''Q'''''<b><sub>''L''</sub>(λ). Suppose that we have two primaries&nbsp;<span class="texhtml">''P''<sub>''L''</sub>(λ) = σ(λ − 0.6)</span>&nbsp;and&nbsp;<span class="texhtml">''P''<sub>''S''</sub>(λ) = σ(λ − 0.5)</span>.</b></span>
 
 
<span class="texhtml">'''[[Image:QE637 2013 P2 F1.PNG]]'''</span>
 
 
Find the color matching function&nbsp;<math>\bar{l}(\lambda)</math>&nbsp;and&nbsp;<math>\bar{s}(\lambda)</math>&nbsp;for these two primaries.
 
  
 
(Refer to ECE638 <u>[https://engineering.purdue.edu/~ece638/lectures/03.%20Trichromatic%20theory%20-%202011.pdf Lecture note 3: Trichromatic theory of color].</u>)  
 
(Refer to ECE638 <u>[https://engineering.purdue.edu/~ece638/lectures/03.%20Trichromatic%20theory%20-%202011.pdf Lecture note 3: Trichromatic theory of color].</u>)  

Revision as of 12:55, 2 May 2017


ECE Ph.D. Qualifying Exam

Communication Networks Signal and Image processing (CS)

Question 5, August 2013(Published on May 2017),

Problem 1,2


Solution 1:

a) Since $ {{f}_{k}}(\lambda ),\ for\ k=0,\ 1,\ 2 $ are the spectral response functions for the three color outputs of a color camera, and the negative spectrum can’t be produced, they must be nonnegative.

b) Since $ {{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda ) $ are the CIE color matching functions, they can be both positive and negative. The color matching function are given by

$ \left\{ \begin{matrix} {{r}_{0}}(\lambda )={{r}^{+}}-{{r}^{-}} \\ {{g}_{0}}(\lambda )={{g}^{+}}-{{g}^{-}} \\ {{b}_{0}}(\lambda )=={{b}^{+}}-{{b}^{-}} \\ \end{matrix} \right. $

where $ {{r}^{+}},\ {{r}^{-}},\ {{g}^{+}},\ {{g}^{-}},\ {{b}^{+}},\ {{b}^{-}} $are the response to photons and must be positive, while the color matching function can be negative to produce a saturated color.


c)
$ \begin{align} & F=\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]=\int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{f}_{1}}(\lambda ) \\ {{f}_{2}}(\lambda ) \\ {{f}_{3}}(\lambda ) \\ \end{matrix} \right]}\ I(\lambda )\ d\lambda =\int\limits_{-\infty }^{\infty }{\left( M\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right] \right)}\ I(\lambda )\ d\lambda=M\left( \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right]}\ I(\lambda )\ d\lambda \right)=M\left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]\ \\ & \Rightarrow\ \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]={{M}^{-1}}_{{}}^{{}}{{F}^{t}} \\ \end{align} $

missed transpose sign on F. It should be [r,g,b]t = M − 1[F1,F2,F3]t.



d) Yes, they do exist, like CIE XYZ. CIE XYZ is defined in terms of CIE RGB so that $ \left[ \begin{matrix} {{x}_{0}}(\lambda ) \\ {{y}_{0}}(\lambda ) \\ {{z}_{0}}(\lambda ) \\ \end{matrix} \right]=M\ \left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right],\ where\ M=\left[ \begin{matrix} 0.490 & 0.310 & 0.200 \\ 0.177 & 0.813 & 0.010 \\ 0.000 & 0.010 & 0.990 \\ \end{matrix} \right] $.


Solution 2:

a) Because for real pixels, measured energy from incident photons is always positive.

b) $ {{r}_{0}}(\lambda ),\ {{g}_{0}}(\lambda ),\ and\ {{b}_{0}}(\lambda ) $are the CIE color matching functions, and therefore can be negative. They go negative to match certain reference colors which are beyond the r, g, b primaries.

c)

$ \begin{align} & \int\limits_{-\infty }^{\infty }{\left[ \begin{matrix} {{f}_{1}}(\lambda ) \\ {{f}_{2}}(\lambda ) \\ {{f}_{3}}(\lambda ) \\ \end{matrix} \right]}\left[ \begin{matrix} I(\lambda )d\lambda & I(\lambda )d\lambda & I(\lambda )d\lambda \\ \end{matrix} \right]=\int\limits_{-\infty }^{\infty }{M\left[ \begin{matrix} {{r}_{0}}(\lambda ) \\ {{g}_{0}}(\lambda ) \\ {{b}_{0}}(\lambda ) \\ \end{matrix} \right]}\left[ \begin{matrix} I(\lambda )d\lambda & I(\lambda )d\lambda & I(\lambda )d\lambda \\ \end{matrix} \right] \\ & \Rightarrow \left[ \begin{matrix} \int\limits_{-\infty }^{\infty }{{{f}_{1}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{f}_{2}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{f}_{3}}(\lambda )I(\lambda )d\lambda } \\ \end{matrix} \right]=M\left[ \begin{matrix} \int\limits_{-\infty }^{\infty }{{{r}_{0}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{g}_{0}}(\lambda )I(\lambda )d\lambda } \\ \int\limits_{-\infty }^{\infty }{{{b}_{0}}(\lambda )I(\lambda )d\lambda } \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right]=M\left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]\Rightarrow \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {{F}_{1}} \\ {{F}_{2}} \\ {{F}_{3}} \\ \end{matrix} \right] \\ \end{align} $

d)

$ \begin{align} \left[ \begin{matrix} r \\ g \\ b \\ \end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix} {X} \\ {Y} \\ {Z} \\ \end{matrix} \right] \\ \end{align} $ where X, Y, Z are the xyzzy tristimulus values (always positive): $ X=\frac{x}{x+y+z},Y=\frac{y}{x+y+z},Z=\frac{z}{x+y+z} $

The student can be more specific on the example of such case. I am not sure what is a good example either. Will consult Professor to figure it out.


Related Problem

In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength $ \lambda $. (Assume that the color matching allows for color to be subtracted from the reference in the standard manner described in class.) At each wavelength $ \lambda $, the matching color is given by

$ \left[ \begin{matrix} R, & G, & B \\ \end{matrix} \right]\left[ \begin{matrix} r(\lambda ) \\ g(\lambda ) \\ b(\lambda ) \\ \end{matrix} \right] $

where

$ \begin{align} & 1=\int\limits_{0}^{\infty }{r(\lambda )d\lambda } \\ & 1=\int\limits_{0}^{\infty }{g(\lambda )d\lambda } \\ & 1=\int\limits_{0}^{\infty }{b(\lambda )d\lambda } \\ \end{align}$ Further define the white point $W=\left[ \begin{matrix} R, & G, & B \\ \end{matrix} \right]\left[ \begin{matrix} {{r}_{w}} \\ {{g}_{w}} \\ {{b}_{w}} \\ \end{matrix} \right] $.

Let $ I(\lambda) $ be the light reflected from a surface.

a) Calculate $ ({{r}_{e}},\ {{g}_{e}},\ {{b}_{e}}) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and an equal energy white point.

b) Calculate $ ({{r}_{c}},\ {{g}_{c}},\ {{b}_{c}}) $ the tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and white point $({{r}_{w}},{{g}_{w}},{{b}_{w}})$. c) Calculate $ ({{r}_{\gamma }},\ {{g}_{\gamma }},\ {{b}_{\gamma }}) $ the gamma corrected tristimulus values for the spectral distribution $ I(\lambda) $ using primaries R, G, B and white point $ ({{r}_{w}},\ {{g}_{w}},\ {{b}_{w}}) $, and $ \gamma =2.2 $.


(Refer to ECE638 Lecture note 3: Trichromatic theory of color.)


Back to ECE QE page:

Alumni Liaison

EISL lab graduate

Mu Qiao