Line 19: Line 19:
 
===Solution1:===
 
===Solution1:===
  
a)<br \>
+
a)
 +
 
 +
<br \>
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
Line 33: Line 35:
 
</math>
 
</math>
  
b)<br \>
+
b)
 +
 
 +
<br \>
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
Line 47: Line 51:
 
</math>
 
</math>
  
c)<br \>
+
c)
 +
 
 +
<br \>
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
Line 59: Line 65:
 
</math>
 
</math>
  
d)<br \>
+
d)
 +
 
 
Number of multiplies per output point to implement each individual system = 2N+1
 
Number of multiplies per output point to implement each individual system = 2N+1
 
So, The number of multiplies per output point to implement each of the two individual systems is 2(2N+1) = 4N+2.
 
So, The number of multiplies per output point to implement each of the two individual systems is 2(2N+1) = 4N+2.
Line 66: Line 73:
  
 
e)  
 
e)  
 +
 
Implementing the two systems in sequence requires less computation, but it is more complex and more sensitive to noise.
 
Implementing the two systems in sequence requires less computation, but it is more complex and more sensitive to noise.
 
Implementing the two systems in a single complete system requires more computation, but it is simpler, less sensitive to noise, and more stable.
 
Implementing the two systems in a single complete system requires more computation, but it is simpler, less sensitive to noise, and more stable.
Line 72: Line 80:
 
== Solution 2: ==
 
== Solution 2: ==
  
a)<br \>
+
a)
 +
 
 +
<br \>
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
Line 86: Line 96:
 
</math>
 
</math>
  
c)<br \>
+
c)
 +
 
 +
<br \>
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
Line 94: Line 106:
  
 
d)  
 
d)  
 +
 
Individually:  <math> 2(2N+1)=4N+2 </math> <br \>
 
Individually:  <math> 2(2N+1)=4N+2 </math> <br \>
 
Complete system: <math>\left( 2N+1 \right)\left( 2N+1 \right)\text{ }=4{{N}^{2}}+4N+1</math>  
 
Complete system: <math>\left( 2N+1 \right)\left( 2N+1 \right)\text{ }=4{{N}^{2}}+4N+1</math>  
Line 101: Line 114:
  
 
e)
 
e)
 +
 
Fewer multipliers are required when implementing individually, but the system is more complicated.
 
Fewer multipliers are required when implementing individually, but the system is more complicated.
 
More complete for the complete system.
 
More complete for the complete system.

Revision as of 11:38, 2 May 2017



ECE Ph.D. Qualifying Exam

Communication Networks Signal and Image processing (CS)

Question 5, August 2012(Published on May 2017),

Problem 1,2


Solution1:

a)


$ \begin{align} & {{h}_{1}}(m,n)=\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m,n-j)=}{a}_{n}\delta (m) \\ & \delta (m,n)=\left\{ \begin{matrix} 1\ m=n=0 \\ 0\qquad O.W \\ \end{matrix}, \right. \delta (m,n-j)=\left\{ \begin{matrix} 1\qquad n=j \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $

b)


$ \begin{align} & {{h}_{2}}(m,n)=\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i,n)=}{b}_{m}\delta (n) \\ & \delta (m,n)=\left\{ \begin{matrix} 1\ m=n=0 \\ 0\qquad O.W \\ \end{matrix}, \right. \delta (m-i,n)=\left\{ \begin{matrix} 1\ m=i;\ n=0 \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $

c)


$ \begin{align} & h(m,n)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}^{{}}\delta (m-i,n-j)}}={{b}_{m}}\ {{a}_{n}} \\ & z(m,n)=\sum\limits_{i=-N}^{N}{{{b}_{i}}\ y(m-i,n)=}\sum\limits_{i=-N}^{N}{{{b}_{i}}\ \left( \sum\limits_{j=-N}^{N}{{{a}_{j}}\ x(m-i,n-j)} \right)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ x(m-i,n-j)}}} \\ & \delta (m-i,n-j)=\left\{ \begin{matrix} 1\ m=i;\ n=j \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $

d)

Number of multiplies per output point to implement each individual system = 2N+1 So, The number of multiplies per output point to implement each of the two individual systems is 2(2N+1) = 4N+2.

Number of multiplies per output point to implement the complete system with a single convolution is $ \left( 2N+1 \right)\left( 2N+1 \right)\text{ }=4{{N}^{2}}+4N+1 $

e)

Implementing the two systems in sequence requires less computation, but it is more complex and more sensitive to noise. Implementing the two systems in a single complete system requires more computation, but it is simpler, less sensitive to noise, and more stable.


Solution 2:

a)


$ \begin{align} & {{h}_{1}}(m,n)=\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m,n-j)=}\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m)\ \delta(n-j)=}= {a}_{n}\ \delta (m) \\ \end{align} $

b)
$ \begin{align} & {{h}_{2}}(m,n)=\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i,j)=}\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i)\ \delta(n)=}= {b}_{m}\ \delta (n) \\ \end{align} $

c)


$ \begin{align} & h(m,n)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ \delta (m-i,n-j)}}=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ \delta (m-i)\ \delta (n-j)}}={{b}_{m}}\ {{a}_{n}} \\ \end{align} $

d)

Individually: $ 2(2N+1)=4N+2 $
Complete system: $ \left( 2N+1 \right)\left( 2N+1 \right)\text{ }=4{{N}^{2}}+4N+1 $

For the complete system with a single convolution, as in each filter location, we will multiply both $ a_j $ and $ b_i $, so we need $ 2(2N+1)^2 $ multiplies in total. But if the student consider that we pre-process the system and calculate the complete filter parameters in advance, then $ (2N+1)^2 $ multiplies is correct.

e)

Fewer multipliers are required when implementing individually, but the system is more complicated. More complete for the complete system.



Related Problem

Consider a 2D linear space-invariant filter with input $ x(m,n) $, output $ y(m,n) $, and impulse response $ h(m,n) $, so that

$ y(m,n) = h(m,n)* x(m,n). $

The impulse response is given by

$ h(m,n) = \left\{\begin{matrix} \frac{1}{(2N+1)^2}, for \ |m|\leq N \ and\ |n|\leq N \\ 0, \quad\quad\quad\quad\quad otherwise \end{matrix}\right. $

a) If implement this filter with 2D convolution, how many multiplies are needed per output value?

b) Find a separable decomponsition of $ h(m,n) $ so that

$ h(m,n) = g(m)f(n) $

where $ g(m) $ and $ f(n) $ are 1D functions.

c) How can the functions $ g(m) $ and $ f(n) $ be used to compute $ y(m,n) $. What are the advantage and disadvantage of this approach?



Back to ECE QE page:

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett