Line 20: Line 20:
  
 
a)
 
a)
 +
 
The gamma of the device is equal 1.
 
The gamma of the device is equal 1.
  
Line 125: Line 126:
  
 
e)
 
e)
 +
 
We see false contours in dark region, because small changes in quantization level leads to large contrast changes that cause visible contours.
 
We see false contours in dark region, because small changes in quantization level leads to large contrast changes that cause visible contours.
  
Line 190: Line 192:
  
 
d)
 
d)
 +
 
  [[File:sol2_2012_1d.jpg|thumbnail|center]]
 
  [[File:sol2_2012_1d.jpg|thumbnail|center]]
 
R is negative and B and G are positive.
 
R is negative and B and G are positive.
Line 196: Line 199:
  
 
e)
 
e)
 +
 
Artifacts in dark regions of gradient where human contrast sensitivity is higher (more sensitive to quantization error).   
 
Artifacts in dark regions of gradient where human contrast sensitivity is higher (more sensitive to quantization error).   
 
[[File:sol2_2012_1e.jpg|thumbnail|center]]
 
[[File:sol2_2012_1e.jpg|thumbnail|center]]

Revision as of 11:01, 2 May 2017



ECE Ph.D. Qualifying Exam

Communication Networks Signal and Image processing (CS)

Question 5, August 2012(Published on May 2017),

Problem 1,2


Solution1:

a)

The gamma of the device is equal 1.

b)

$ \begin{align} & \left[ \begin{matrix} {{X}_{r}} \\ {{Y}_{r}} \\ {{Z}_{r}} \\ \end{matrix} \right]=\left[ \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{matrix} \right]\left[ \begin{matrix} 1 \\ 0 \\ 0 \\ \end{matrix} \right]\Rightarrow \left\{ \begin{matrix} {{X}_{r}}=a \\ {{Y}_{r}}=d \\ {{Z}_{r}}=g \\ \end{matrix} \right. \\ & {{x}_{r}}={{\frac{{{X}_{r}}}{{{X}_{r}}+{{Y}_{r}}+Z}}_{r}}=\frac{a}{a+d+g},_{{}}^{{}}{{y}_{r}}=\frac{{{Y}_{r}}}{{{X}_{r}}+{{Y}_{r}}+{{Z}_{r}}}=\frac{d}{a+d+g} \\ \end{align} $

$ \begin{align} & \left[ \begin{matrix} {{X}_{g}} \\ {{Y}_{g}} \\ {{Z}_{g}} \\ \end{matrix} \right]=\left[ \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{matrix} \right]\left[ \begin{matrix} 0 \\ 1 \\ 0 \\ \end{matrix} \right]\Rightarrow \left\{ \begin{matrix} {{X}_{g}}=b \\ {{Y}_{g}}=e \\ {{Z}_{g}}=h \\ \end{matrix} \right. \\ & {{x}_{g}}=\frac{{{X}_{g}}}{{{X}_{g}}+{{Y}_{g}}+{{Z}_{g}}}=\frac{b}{b+e+h},_{{}}^{{}}{{y}_{g}}=\frac{{{Y}_{g}}}{{{X}_{g}}+{{Y}_{g}}+{{Z}_{g}}}=\frac{e}{b+e+h} \\ \end{align} $

$ \begin{align} & \left[ \begin{matrix} {{X}_{b}} \\ {{Y}_{b}} \\ {{Z}_{b}} \\ \end{matrix} \right]=\left[ \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{matrix} \right]\left[ \begin{matrix} 0 \\ 0 \\ 1 \\ \end{matrix} \right]\Rightarrow \left\{ \begin{matrix} {{X}_{b}}=c \\ {{Y}_{b}}=f \\ {{Z}_{b}}=i \\ \end{matrix} \right. \\ & {{x}_{b}}=\frac{{{X}_{b}}}{{{X}_{b}}+{{Y}_{b}}+{{Z}_{b}}}=\frac{c}{c+f+i},_{{}}^{{}}{{y}_{b}}=\frac{{{Y}_{b}}}{{{X}_{b}}+{{Y}_{b}}+{{Z}_{b}}}=\frac{f}{c+f+i} \\ \end{align} $

c)

$ \begin{align} & \left[ \begin{matrix} {{X}_{w}} \\ {{Y}_{w}} \\ {{Z}_{w}} \\ \end{matrix} \right]=\left[ \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{matrix} \right]\left[ \begin{matrix} 1 \\ 1 \\ 1 \\ \end{matrix} \right]\Rightarrow \left\{ \begin{matrix} {{X}_{w}}=a+b+c \\ {{Y}_{w}}=d+e+f \\ {{Z}_{w}}=g+h+i \\ \end{matrix} \right. \\ & A={{X}_{w}}+{{Y}_{w}}+{{Z}_{w}}=a+b+c+d+e+f+g+h+i \\ & {{x}_{w}}=\frac{{{X}_{w}}}{{{X}_{w}}+{{Y}_{w}}+{{Z}_{w}}}=\frac{a+b+c}{A},_{{}}^{{}}{{y}_{w}}=\frac{{{Y}_{w}}}{{{X}_{w}}+{{Y}_{w}}+{{Z}_{w}}}=\frac{d+e+f}{A} \\ \end{align} $

d)

$ (X,Y,Z)=(0,1/2,1/2)_{{}}^{{}}\Rightarrow _{{}}^{{}}(x,y)=(0,1/2) $
Diagram.jpg

As can be seen, since the point lies outside the horseshoe shape diagram, it’s doesn’t exist (imaginary color) while mathematically we can talk about it and write down the equation for it. For this point, R<0, G>0, and B>0.

e)

We see false contours in dark region, because small changes in quantization level leads to large contrast changes that cause visible contours.

Solution 2:

a)

$ \left[ {\begin{array}{*{20}{c}} R\\ G\\ B \end{array}} \right] $ are linear with energy $ \Rightarrow $ $ \gamma=1 $.

b)

$ \left[ {\begin{array}{*{20}{c}} X\\ Y\\ Z \end{array}} \right]=M\left[ {\begin{array}{*{20}{c}} 1\\ 0\\ 0\\ \end{array}} \right] \Rightarrow (x_r,y_r)=(\frac{a}{a+d+g},\frac{d}{a+d+g}) $

$ \left[ {\begin{array}{*{20}{c}} X\\ Y\\ Z \end{array}} \right]=M\left[ {\begin{array}{*{20}{c}} 0\\ 1\\ 0\\ \end{array}} \right] \Rightarrow (x_g,y_g)=(\frac{b}{b+e+h},\frac{e}{b+e+h}) $

$ \left[ {\begin{array}{*{20}{c}} X\\ Y\\ Z \end{array}} \right]=M\left[ {\begin{array}{*{20}{c}} 0\\ 0\\ 1\\ \end{array}} \right] \Rightarrow (x_b,y_b)=(\frac{c}{c+f+i},\frac{f}{c+f+i}) $

c)

$ \left[ {\begin{array}{*{20}{c}} X\\ Y\\ Z \end{array}} \right]=M\left[ {\begin{array}{*{20}{c}} 1\\ 1\\ 1\\ \end{array}} \right] \Rightarrow {{x}_{w}}=\frac{a+b+c}{a+b+c+d+e+f+g+h+i}, {{Y}_{w}}=\frac{d+e+f}{a+b+c+d+e+f+g+h+i} , {{Z}_{w}}=1-{{x}_{w}}-{{x}_{w}}. $

d)

Sol2 2012 1d.jpg

R is negative and B and G are positive.

The student can be more specific about the positive or negative of each R,G,B value of this color.

e)

Artifacts in dark regions of gradient where human contrast sensitivity is higher (more sensitive to quantization error).

Sol2 2012 1e.jpg

Related Problem

Consider a color imaging device that takes input values of $ (r,g,b) $ and produces ouput $ (X,Y,Z) $ values given by

$ \left[ {\begin{array}{*{20}{c}} X\\ Y\\ Z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} a&b&c\\ d&e&f\\ g&h&i \end{array}} \right]\left[ {\begin{array}{*{20}{c}} r^\alpha\\ g^\alpha\\ b^\alpha \end{array}} \right] $

a) Calculate the white point of the device in chromaticity coordinates.

b) What are the primaries associated with the r,g, and b components respectively?

c) What is the gamma of the device?

d) Draw the region on the chromaticity diagram corresponding to $ r < 0, g > 0, b > 0 $.


Back to ECE QE page:

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach