Revision as of 21:39, 10 November 2014 by Liu192 (Talk | contribs)

a) Since

$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $

and

$ p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-jnw} $, 

we have:

$ p_0(e^{jw}) = X(e^{j\mu},e^{jw}) |_{\mu=0} $

b) Similarly to a), we have:

$ p_1(e^{jw}) = X(e^{jw},e^{j\nu}) |_{\nu=0} $

c)
$ \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} $ which is the DC point of the image.

d) No, it can't provide sufficient information. From the expression in a) and b), we see that $ p_0(e^{jw}) $ and $ p_1(e^{jw}) $ are only slices of the DSFT. It lost the information when $ \mu $ and $ \nu <math> are not zero. A simple example would be: Let <math> x(m,n) = \left[ {\begin{array}{*{20}{c}} 1 2 \\ 3 4\\ \end{array}} \right] $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman