Line 15: Line 15:
 
b) The CIE color matching functions are not always positive. <span class="texhtml">''r''<sub>0</sub>(λ)</span> takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the <span class="texhtml">''R'',''G'',</span> and <span class="texhtml">''B''</span> primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.  
 
b) The CIE color matching functions are not always positive. <span class="texhtml">''r''<sub>0</sub>(λ)</span> takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the <span class="texhtml">''R'',''G'',</span> and <span class="texhtml">''B''</span> primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.  
  
c) <br> <math>
+
c) <br> <math>\left[ {\begin{array}{*{20}{c}}
\left[ {\begin{array}{*{20}{c}}
+
 
F_1\\
 
F_1\\
 
F_2\\
 
F_2\\
Line 59: Line 58:
 
g\\
 
g\\
 
b
 
b
\end{array}} \right]
+
\end{array}} \right]</math>  
</math>  
+
  
 
So that, <span class="texhtml">[''r'',''g'',''b'']<sup>''t''</sup> = ''M''<sup> − 1</sup>[''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]</span>.  
 
So that, <span class="texhtml">[''r'',''g'',''b'']<sup>''t''</sup> = ''M''<sup> − 1</sup>[''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]</span>.  
Line 68: Line 66:
 
== Solution 2:  ==
 
== Solution 2:  ==
  
a)&nbsp;<math>f_1(\lambda)</math>,&nbsp;<math>f_2(\lambda)</math>&nbsp;and&nbsp;<math>f_3(\lambda)</math>&nbsp;are the spectral functions for the three color outputs of color camera. It must be positive because we cannot produce negative spectrum.&nbsp;
+
a)&nbsp;<span class="texhtml">''f''<sub>1</sub>(λ)</span>,&nbsp;<span class="texhtml">''f''<sub>2</sub>(λ)</span>&nbsp;and&nbsp;<span class="texhtml">''f''<sub>3</sub>(λ)</span>&nbsp;are the spectral functions for the three color outputs of color camera. It must be positive because we cannot produce negative spectrum.&nbsp;  
  
b)  
+
b) No.&nbsp;<math>r_o(\lambda), g_o(\lambda) and b_o(\lambda)</math>&nbsp;are CIE color matching. It takes negative value in order to substract some color to be saturated.&nbsp;
  
c)  
+
c)&nbsp;<math>\left[ {\begin{array}{*{20}{c}}
 +
F_1\\
 +
F_2\\
 +
F_3
 +
\end{array}} \right]
 +
=
 +
{\begin{array}{*{20}{c}}
 +
\int_{-\infty}^{\infty}
 +
\end{array}}
 +
\left[ {\begin{array}{*{20}{c}}
 +
f_1(\lambda)\\
 +
f_1(\lambda)\\
 +
f_1(\lambda)
 +
\end{array}} \right]
 +
I(\lambda)d\lambda
 +
 
 +
= {\begin{array}{*{20}{c}}
 +
\int_{-\infty}^{\infty}
 +
\end{array}}
 +
M
 +
\left[ {\begin{array}{*{20}{c}}
 +
r_0(\lambda)\\
 +
g_0(\lambda)\\
 +
b_0(\lambda)
 +
\end{array}} \right]
 +
I(\lambda)d\lambda
 +
 
 +
= M
 +
{\begin{array}{*{20}{c}}
 +
\int_{-\infty}^{\infty}
 +
\end{array}}
 +
\left[ {\begin{array}{*{20}{c}}
 +
r_0(\lambda)\\
 +
g_0(\lambda)\\
 +
b_0(\lambda)
 +
\end{array}} \right]
 +
I(\lambda)d\lambda
 +
 
 +
= M
 +
\left[ {\begin{array}{*{20}{c}}
 +
r\\
 +
g\\
 +
b
 +
\end{array}} \right]</math>
  
d)  
+
d) Yes. They exist. For example, CIE XYZ.&nbsp;
  
 
<br>  
 
<br>  

Revision as of 19:13, 12 November 2014


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Problem 2

Problem 1 ,Problem 2

Solution 1:

a) If the color matching functions fk(λ) has negative values, it will result in negative values in Fk. In this case, the color can not be reproduced by this device.

b) The CIE color matching functions are not always positive. r0(λ) takes negative values. This is the case because, to match some reference color that is too saturated, colors have to be subtracted from the R,G, and B primaries. This results in negative values in tristimulus values r, g, and b. So the color matching functions at the corresponding wavelength have negative values.

c)
$ \left[ {\begin{array}{*{20}{c}} F_1\\ F_2\\ F_3 \end{array}} \right] = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] I(\lambda)d\lambda = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} M \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M \left[ {\begin{array}{*{20}{c}} r\\ g\\ b \end{array}} \right] $

So that, [r,g,b]t = M − 1[F1,F2,F3].

d) It exists. CIE XYZ is one example. However, XYZ has problems with its primaries, since, the primary colors are imaginary.

Solution 2:

a) f1(λ)f2(λ) and f3(λ) are the spectral functions for the three color outputs of color camera. It must be positive because we cannot produce negative spectrum. 

b) No. $ r_o(\lambda), g_o(\lambda) and b_o(\lambda) $ are CIE color matching. It takes negative value in order to substract some color to be saturated. 

c) $ \left[ {\begin{array}{*{20}{c}} F_1\\ F_2\\ F_3 \end{array}} \right] = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] I(\lambda)d\lambda = {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} M \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M {\begin{array}{*{20}{c}} \int_{-\infty}^{\infty} \end{array}} \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] I(\lambda)d\lambda = M \left[ {\begin{array}{*{20}{c}} r\\ g\\ b \end{array}} \right] $

d) Yes. They exist. For example, CIE XYZ. 



Related Problem

1. In a color matching experiment, the three primaries R, G, B are used to match the color of a pure spectral component at wavelength λ. Here the color matching allows for color to be subtracted from the reference color. At each wavelength λ, the matching color is given by

$ \left[ {\begin{array}{*{20}{c}} R, G, B \end{array}} \right] \left[ {\begin{array}{*{20}{c}} r(\lambda)\\ g(\lambda)\\ b(\lambda) \end{array}} \right] $

where r(λ), g(λ), and b(λ) are normalized to 1.

Further define the white point

$ W = \left[ {\begin{array}{*{20}{c}} R, G, B \end{array}} \right] \left[ {\begin{array}{*{20}{c}} r_w\\ g_w\\ b_w \end{array}} \right] $

Let I(λ) be the light reflected from a surface.

a) Calculate (re,ge,be) the tristimulus values for the spectral distribution I(λ) using primaries R,G,B and an equal energy white point.

b) Calculate (rc,gc,bc) the tristimulus values for the spectral distribution I(λ) using primaries R,G,B and white point (rw,gw,bw).


Back to ECE QE page:

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch