Line 10: Line 10:
 
:[[QE2013_AC-3_ECE580-1|Part 1]],[[QE2013_AC-3_ECE580-2|2]],[[QE2013_AC-3_ECE580-3|3]],[[QE2013_AC-3_ECE580-4|4]],[[QE2013_AC-3_ECE580-5|5]]
 
:[[QE2013_AC-3_ECE580-1|Part 1]],[[QE2013_AC-3_ECE580-2|2]],[[QE2013_AC-3_ECE580-3|3]],[[QE2013_AC-3_ECE580-4|4]],[[QE2013_AC-3_ECE580-5|5]]
  
'''(i)'''
 
 
<br> '''Solution: ''' <br>
 
<br> '''Solution: ''' <br>
 
<math>x(3) = x(2) + 2u(2) = x(1) + 2u(1) + 2u(2) = x(0) + 2u(0) + 2u(1) + 2u(2) </math>
 
<math>x(3) = x(2) + 2u(2) = x(1) + 2u(1) + 2u(2) = x(0) + 2u(0) + 2u(1) + 2u(2) </math>
Line 18: Line 17:
 
<math>\therefore \ Constraint: 2u(0) + 2u(1) + 2u(2) = 6 </math>
 
<math>\therefore \ Constraint: 2u(0) + 2u(1) + 2u(2) = 6 </math>
  
Let <math>f(u) = u^2(0) + u^2(1) + u^2(2), h(u) = 2u(0) + 2u(1) + 2u(2) - 6 </math>
+
Let <math>f(u) = u^2(0) + u^2(1) + u^2(2), h(u) = 2u(0) + 2u(1) + 2u(2) - 6 </math> (1/2 in the objective function can be ignored for now)
  
 
Let u* be a local minimizer.  Lagrange theorem says there exists a λ such that:
 
Let u* be a local minimizer.  Lagrange theorem says there exists a λ such that:
  
<math>\nabla f(u*) + \lambda \nabla h(u*) = 0 \\
+
<math>\nabla f(u^*) + \lambda \nabla h(u^*) = 0 \\
       h(u*) = 0 </math>
+
       h(u^*) = 0 </math>
 +
 
 +
Therefore,
 +
 
 +
<math>2 u^*(0) + 2 \lambda = 0 \\
 +
      2 u^*(1) + 2 \lambda = 0 \\
 +
      2 u^*(2) + 2 \lambda = 0 \\
 +
      2 u^*(0) + 2 u^*(1) + 2 u^*(2) - 6 = 0  \\ \\
 +
 
 +
\therefore u^*(0) = u^*(1) = u^*(2) = 1</math>
 +
 
 +
Optimal performance index is <math>\frac{3}{2}</math>
 +
 
 
[[ QE2013 AC-3 ECE580|Back to QE2013 AC-3 ECE580]]
 
[[ QE2013 AC-3 ECE580|Back to QE2013 AC-3 ECE580]]

Revision as of 10:54, 27 January 2015


QE2013_AC-3_ECE580-4

Part 1,2,3,4,5


Solution:
$ x(3) = x(2) + 2u(2) = x(1) + 2u(1) + 2u(2) = x(0) + 2u(0) + 2u(1) + 2u(2) $

$ \because x(0) = 3, x(3) = 9 $

$ \therefore \ Constraint: 2u(0) + 2u(1) + 2u(2) = 6 $

Let $ f(u) = u^2(0) + u^2(1) + u^2(2), h(u) = 2u(0) + 2u(1) + 2u(2) - 6 $ (1/2 in the objective function can be ignored for now)

Let u* be a local minimizer. Lagrange theorem says there exists a λ such that:

$ \nabla f(u^*) + \lambda \nabla h(u^*) = 0 \\ h(u^*) = 0 $

Therefore,

$ 2 u^*(0) + 2 \lambda = 0 \\ 2 u^*(1) + 2 \lambda = 0 \\ 2 u^*(2) + 2 \lambda = 0 \\ 2 u^*(0) + 2 u^*(1) + 2 u^*(2) - 6 = 0 \\ \\ \therefore u^*(0) = u^*(1) = u^*(2) = 1 $

Optimal performance index is $ \frac{3}{2} $

Back to QE2013 AC-3 ECE580

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010