Line 1: Line 1:
 
  
 
=QE2012_AC-3_ECE580-4=
 
=QE2012_AC-3_ECE580-4=
Line 5: Line 4:
  
  
Put your content here . . .
+
<br> Solution:
 +
 
 +
        We can transfer the problem to the following standard form:
 +
        <span class="texhtml">''Mnimize''</span>'''    <span class="texhtml"> − ''x''<sub>1</sub> − 2''x''<sub>2</sub></span>'''
 +
        <span class="texhtml">''Sbject to''</span>'''    <span class="texhtml"> − 2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>'''
 +
                        <span class="texhtml"> − ''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span>
 +
                        <span class="texhtml">''x''<sub>1</sub> + ''x''<sub>5</sub> = 3</span>
 +
                        <math>x_1, x_2, x_3, x_4, x_5 \ge 0.</math>
 +
 
 +
        We form the corresponding tableau for the problem
 +
      <math>\begin{matrix}
 +
  a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 +
  -2 & 1& 1 &0& 0& 2 \\
 +
  -1& 1& 0 &1 &0 &3\\
 +
  1 &0& 0& 0& 1& 3\\
 +
  -1& -2 &0& 0& 0& 0
 +
\end{matrix}</math>
 +
     
 +
Since it is already in canonical form. Because <span class="texhtml">''r''<sub>2</sub> =  − 7</span>, we bring <span class="texhtml">''a''<sub>2</sub></span> into the basis.
 +
 
 +
      After computing the ratios, we pivot about the (1,2) element of the tableau to obtain
 +
      <math>\begin{matrix}
 +
  a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 +
  -2 & 1& 1 &0& 0& 2 \\
 +
  1& 0& -1 &1 &0 &1\\
 +
  1 &0& 0& 0& 1& 3\\
 +
  -5& 0 &2& 0& 0& 4
 +
\end{matrix}</math>
 +
 
 +
      Similarly, we pivot about the (2,1) element to obtain
 +
      <math>\begin{matrix}
 +
  a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 +
  0 & 1& -1 &2& 0& 4 \\
 +
  1& 0& -1 &1 &0 &1\\
 +
  0 &0& 1& -1& 1& 2\\
 +
  0& 0 &-3& 5& 0& 9
 +
\end{matrix}</math>
 +
 
 +
      Similarly, we pivot about the (3,3) element to obtain
 +
      <math>\begin{matrix}
 +
  a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 +
  0 & 1& 0 &1& 1& 6 \\
 +
  1& 0& 0 &0 &1 &3\\
 +
  0 &0& 1& -1& 1& 2\\
 +
  0& 0 &0& 2& 3& 15
 +
\end{matrix}</math>
 +
 
 +
      Therefore, <span class="texhtml">''x''<sub>1</sub> = 3,</span> <span class="texhtml">''x''<sub>2</sub> = 6,</span> maximize the function.
 +
 
 +
Solution 2:
 +
 
 +
The standard form for this problem is
 +
        <span class="texhtml">''Mnimize''</span>'''    <span class="texhtml"> − ''x''<sub>1</sub> − 2''x''<sub>2</sub></span>'''
 +
        <span class="texhtml">''Sbject to''</span>'''    <span class="texhtml"> − 2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>'''
 +
                        <span class="texhtml"> − ''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span>
 +
                        <span class="texhtml">''x''<sub>1</sub> + ''x''<sub>5</sub> = 3</span>
 +
                        <math>x_1, x_2, x_3, x_4, x_5 \ge 0.</math>
 +
 
 +
<math>\begin{matrix}
 +
  a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 +
  -2 & 1& 1 &0& 0& 2 \\
 +
  -1& 1& 0 &1 &0 &3\\
 +
  1 &0& 0& 0& 1& 3\\
 +
  -1& -2 &0& 0& 0& 0
 +
\end{matrix}\Rightarrow
 +
 
 +
\begin{matrix}
 +
  a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 +
  -2 & 1& 1 &0& 0& 2 \\
 +
  1& 0& -1 &1 &0 &1\\
 +
  1 &0& 0& 0& 1& 3\\
 +
  -5& 0 &2& 0& 0& 4
 +
\end{matrix}
 +
\Rightarrow
 +
\begin{matrix}
 +
  a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 +
  0 & 1& -1 &2& 0& 4 \\
 +
  1& 0& -1 &1 &0 &1\\
 +
  0 &0& 1& -1& 1& 2\\
 +
  0& 0 &-3& 5& 0& 9
 +
\end{matrix}
 +
\Rightarrow
 +
\begin{matrix}
 +
  a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 +
  0 & 1& 0 &1& 1& 6 \\
 +
  1& 0& 0 &0 &1 &3\\
 +
  0 &0& 1& -1& 1& 2\\
 +
  0& 0 &0& 2& 3& 15
 +
\end{matrix}</math>
 +
 
 +
From the last tableau, we can see that <math>\begin{bmatrix}
 +
  x^{1} = 3\\ x^{2} = 6 
 +
\end{bmatrix}</math>
 +
maximizes the object function. The maximum value is 15
 +
 
 +
<font color="#0000FF "><span style="font-size: 19px;">
 +
<math>\color{blue}
 +
\text{ It should be noted that, }
 +
\begin{bmatrix}
 +
  x^{1} = 3\\ x^{2} = 6 
 +
\end{bmatrix} \text{actually minimizes the standard form,}
 +
</math>
 +
<math>\color{blue}
 +
\text{which equivalently maximizes the original problem}
 +
</math>
 +
</span></font>
  
  

Revision as of 06:17, 26 January 2013

QE2012_AC-3_ECE580-4


Solution:

        We can transfer the problem to the following standard form:
        Mnimize    x1 − 2x2
        Sbject to     − 2x1 + x2 + x3 = 2
                       x1 + x2 + x4 = 3
                       x1 + x5 = 3
                       $ x_1, x_2, x_3, x_4, x_5 \ge 0. $
       We form the corresponding tableau for the problem
     $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   -2 & 1& 1 &0& 0& 2 \\   -1& 1& 0 &1 &0 &3\\   1 &0& 0& 0& 1& 3\\   -1& -2 &0& 0& 0& 0  \end{matrix} $
      
Since it is already in canonical form. Because r2 =  − 7, we bring a2 into the basis.
      After computing the ratios, we pivot about the (1,2) element of the tableau to obtain
     $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   -2 & 1& 1 &0& 0& 2 \\   1& 0& -1 &1 &0 &1\\   1 &0& 0& 0& 1& 3\\   -5& 0 &2& 0& 0& 4  \end{matrix} $
      Similarly, we pivot about the (2,1) element to obtain 
     $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   0 & 1& -1 &2& 0& 4 \\   1& 0& -1 &1 &0 &1\\   0 &0& 1& -1& 1& 2\\   0& 0 &-3& 5& 0& 9  \end{matrix} $
      Similarly, we pivot about the (3,3) element to obtain 
     $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   0 & 1& 0 &1& 1& 6 \\   1& 0& 0 &0 &1 &3\\   0 &0& 1& -1& 1& 2\\   0& 0 &0& 2& 3& 15  \end{matrix} $
      Therefore, x1 = 3, x2 = 6, maximize the function.

Solution 2:

The standard form for this problem is

        Mnimize    x1 − 2x2
        Sbject to     − 2x1 + x2 + x3 = 2
                       x1 + x2 + x4 = 3
                       x1 + x5 = 3
                       $ x_1, x_2, x_3, x_4, x_5 \ge 0. $

$ \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ -2 & 1& 1 &0& 0& 2 \\ -1& 1& 0 &1 &0 &3\\ 1 &0& 0& 0& 1& 3\\ -1& -2 &0& 0& 0& 0 \end{matrix}\Rightarrow \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ -2 & 1& 1 &0& 0& 2 \\ 1& 0& -1 &1 &0 &1\\ 1 &0& 0& 0& 1& 3\\ -5& 0 &2& 0& 0& 4 \end{matrix} \Rightarrow \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ 0 & 1& -1 &2& 0& 4 \\ 1& 0& -1 &1 &0 &1\\ 0 &0& 1& -1& 1& 2\\ 0& 0 &-3& 5& 0& 9 \end{matrix} \Rightarrow \begin{matrix} a_1 & a_2 & a_3 & a_4 & a_5 & b \\ 0 & 1& 0 &1& 1& 6 \\ 1& 0& 0 &0 &1 &3\\ 0 &0& 1& -1& 1& 2\\ 0& 0 &0& 2& 3& 15 \end{matrix} $

From the last tableau, we can see that $ \begin{bmatrix} x^{1} = 3\\ x^{2} = 6 \end{bmatrix} $ maximizes the object function. The maximum value is 15

$ \color{blue} \text{ It should be noted that, } \begin{bmatrix} x^{1} = 3\\ x^{2} = 6 \end{bmatrix} \text{actually minimizes the standard form,} $ $ \color{blue} \text{which equivalently maximizes the original problem} $



Back to QE2012 AC-3 ECE580

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood