Line 47: Line 47:
  
 
Problem 2. [40 pts] <br>
 
Problem 2. [40 pts] <br>
(a) Let <math>x[n]</math> and <math>y[n]</math> be real-valued sequences both of which are even-symmetric: <math>x[n]=x[-n]</\math> and <math>y[n]=y[-n]</\math>. Under these conditions, prove that  
+
(a) Let <math>x[n]</math> and <math>y[n]</math> be real-valued sequences both of which are even-symmetric: <math>x[n]=x[-n]</math> and <math>y[n]=y[-n]</math>. Under these conditions, prove that  
<math>r_{xy}[l]=r_{yx}[l]</\math> for all <math>l</\math>.<br>
+
<math>r_{xy}[l]=r_{yx}[l]</math> for all <math>l</math>.<br>
(b) Express the autocorrelation sequence r_{zz}[l] for the complex-valued signal <math>z[n]=x[n]+jy[n]</\math> where <math>x[n]</\math> and <math>y[n]</\math> are real-valued sequences, in terms of <math>r_{xx}[l]</math>,<math>r_{xy}[l]</math>,<math>r_yx[l]</\math> and <math>r_{yy}[l]</\math>.<br>
+
(b) Express the autocorrelation sequence r_{zz}[l] for the complex-valued signal <math>z[n]=x[n]+jy[n]</math> where <math>x[n]</math> and <math>y[n]</math> are real-valued sequences, in terms of <math>r_{xx}[l]</math>,<math>r_{xy}[l]</math>,<math>r_yx[l]</math> and <math>r_{yy}[l]</math>.<br>
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.1|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.1|answers and discussions]]'''

Revision as of 00:00, 18 February 2019


ECE Ph.D. Qualifying Exam

Communicates & Signal Process (CS)

Question 2: Signal Processing

August 2011




Problem 1. [60 pts]
In the system below, the two analysis filters, $ h_0[n] $ and $ h_1[n] $, and the two synthesis filters, $ f_0[n] $ and $ f_1[n] $,form a Quadrature Mirror Filter (QMF). Specially,
$ h_0[n]=\dfrac{2\beta cos[(1+\beta)\pi(n+5)/2]}{\pi[1-4\beta^2(n+5)^2]}+\dfrac{sin[(1-\beta)\pi(n+0.5)/2]}{\pi[(n+.5)-4\beta^2(n+.5)^3]},-\infty<n<\infty with \beta=0.5 $
$ h_1[n]=(-1)^n h_0[n] $ $ f_0[n]=h_0[n] $ $ f_1[n]=-h_1[n] $
The DTFT of the halfband filter $ h_0[n] $ above may be expressed as follows:
$ H_0(\omega)= \begin{cases} e^{j\dfrac{\omega}{2}} |\omega|<\dfrac{\pi}{4},\\ e^{j\dfrac{\omega}{2}} cos[(|\omega|-\dfrac{\pi}{4})], \dfrac{\pi}{4}<|\omega|<\dfrac{3\pi}{4} \\ 0 \dfrac{3\pi}{4}<|\omega|<\pi \end{cases} $
Wan82_ECE538_problem1.PNG Consider the following input signal
$ x[n]=16\dfrac{sin(\dfrac{3\pi}{8}n)}{\pi n}\dfrac{sin(\dfrac{\pi}{8}n)}{\pi n}cos(\dfrac{\pi}{2}n) $
HINT: The solution to problem is greatly simplified if you exploit the fact that the DTFT of the input signal $ x[n] $ is such that $ X(\omega)=X(\omega-\pi) $.
(a) Plot the magnitude of the DTFT of $ x[n] $, $ X(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(b) Plot the magnitude of the DTFT of $ x_0[n] $, $ X_0(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(c) Plot the magnitude of the DTFT of $ x_1[n] $, $ X_1(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(d) Plot the magnitude of the DTFT of $ y_0[n] $, $ Y_0(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(e) Plot the magnitude of the DTFT of $ y_1[n] $, $ Y_1(\omega) $, over $ -\pi<\omega<\pi $. Show all work.
(f) Plot the magnitude of the DTFT of the final output $ y[n][n] $, $ Y(\omega) $, over $ -\pi<\omega<\pi $. Show all work.

Click here to view student answers and discussions

Problem 2. [40 pts]
(a) Let $ x[n] $ and $ y[n] $ be real-valued sequences both of which are even-symmetric: $ x[n]=x[-n] $ and $ y[n]=y[-n] $. Under these conditions, prove that $ r_{xy}[l]=r_{yx}[l] $ for all $ l $.
(b) Express the autocorrelation sequence r_{zz}[l] for the complex-valued signal $ z[n]=x[n]+jy[n] $ where $ x[n] $ and $ y[n] $ are real-valued sequences, in terms of $ r_{xx}[l] $,$ r_{xy}[l] $,$ r_yx[l] $ and $ r_{yy}[l] $.

Click here to view student answers and discussions


Back to ECE QE page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett