(23 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
Yuanjun Wang
 
Yuanjun Wang
  
Below are CSFT of six signals. The general way we solve CSFT questions is to guess its Fourier Transform, then prove it by taking the inverse F.T. of the signals.
+
Below are CSFT of signals. The general way we solve CSFT questions is to guess its Fourier Transform, then prove it by taking the inverse F.T. of the signals.
  
 
1. <math>f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 
1. <math>f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 
   
 
   
guess: <math>F(U,V) = rect(U) rect(V)</math>
+
guess: <math>F(u,v) = rect(u) rect(v)</math> \\
 +
 
 +
prove:
 +
<math> F^{-1}(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} rect(u) rect(v) e^{j2\pi (ux+vy)} dx dy </math>
 +
 
 +
because we know that <math> rect(u) = \left\{
 +
\begin{array}{ll}
 +
1, & \text{ if } |t|<\frac{1}{2}\\
 +
0, & \text{ else}
 +
\end{array}
 +
\right.
 +
</math>
 +
 
 +
<math> F^{-1}(u,v) = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{j2\pi ux} du e^{j2\pi vy} dy </math>
 +
 
 +
<math>            = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \frac{e^{j\pi x} - e^{-j\pi x}}{j\pi x} e^{j2\pi vy} dy </math>
 +
 
 +
<math> = \frac{ sin(\pi x)}{\pi x} \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) e^{j2\pi vy} dy </math>
 +
 
 +
<math> = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 +
 
 +
so <math> f(x,y) = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 +
 
 +
so CSFT (f(x,y)) = rect(u) rect(v)

Latest revision as of 05:39, 14 December 2013

Prove of the CSFT of the signals

Yuanjun Wang

Below are CSFT of signals. The general way we solve CSFT questions is to guess its Fourier Transform, then prove it by taking the inverse F.T. of the signals.

1. $ f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

guess: $ F(u,v) = rect(u) rect(v) $ \\

prove: $ F^{-1}(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} rect(u) rect(v) e^{j2\pi (ux+vy)} dx dy $

because we know that $ rect(u) = \left\{ \begin{array}{ll} 1, & \text{ if } |t|<\frac{1}{2}\\ 0, & \text{ else} \end{array} \right. $

$ F^{-1}(u,v) = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{j2\pi ux} du e^{j2\pi vy} dy $

$ = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \frac{e^{j\pi x} - e^{-j\pi x}}{j\pi x} e^{j2\pi vy} dy $

$ = \frac{ sin(\pi x)}{\pi x} \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) e^{j2\pi vy} dy $

$ = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

so $ f(x,y) = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

so CSFT (f(x,y)) = rect(u) rect(v)

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman