(New page: =Prove of the CSFT of the signals=)
 
 
(33 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=Prove of the CSFT of the signals=
 
=Prove of the CSFT of the signals=
 +
 +
Yuanjun Wang
 +
 +
Below are CSFT of signals. The general way we solve CSFT questions is to guess its Fourier Transform, then prove it by taking the inverse F.T. of the signals.
 +
 +
1. <math>f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 +
 +
guess: <math>F(u,v) = rect(u) rect(v)</math> \\
 +
 +
prove:
 +
<math> F^{-1}(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} rect(u) rect(v) e^{j2\pi (ux+vy)} dx dy </math>
 +
 +
because we know that <math> rect(u) = \left\{
 +
\begin{array}{ll}
 +
1, & \text{ if } |t|<\frac{1}{2}\\
 +
0, & \text{ else}
 +
\end{array}
 +
\right.
 +
</math>
 +
 +
<math> F^{-1}(u,v) = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{j2\pi ux} du e^{j2\pi vy} dy </math>
 +
 +
<math>            = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \frac{e^{j\pi x} - e^{-j\pi x}}{j\pi x} e^{j2\pi vy} dy </math>
 +
 +
<math> = \frac{ sin(\pi x)}{\pi x} \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) e^{j2\pi vy} dy </math>
 +
 +
<math> = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 +
 +
so <math> f(x,y) = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} </math>
 +
 +
so CSFT (f(x,y)) = rect(u) rect(v)

Latest revision as of 05:39, 14 December 2013

Prove of the CSFT of the signals

Yuanjun Wang

Below are CSFT of signals. The general way we solve CSFT questions is to guess its Fourier Transform, then prove it by taking the inverse F.T. of the signals.

1. $ f(x,y)=\frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

guess: $ F(u,v) = rect(u) rect(v) $ \\

prove: $ F^{-1}(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} rect(u) rect(v) e^{j2\pi (ux+vy)} dx dy $

because we know that $ rect(u) = \left\{ \begin{array}{ll} 1, & \text{ if } |t|<\frac{1}{2}\\ 0, & \text{ else} \end{array} \right. $

$ F^{-1}(u,v) = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{j2\pi ux} du e^{j2\pi vy} dy $

$ = \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) \frac{e^{j\pi x} - e^{-j\pi x}}{j\pi x} e^{j2\pi vy} dy $

$ = \frac{ sin(\pi x)}{\pi x} \int_{-\frac{1}{2}}^{\frac{1}{2}} rect(v) e^{j2\pi vy} dy $

$ = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

so $ f(x,y) = \frac{ sin(\pi x)}{\pi x} \frac{ sin(\pi y)}{\pi y} $

so CSFT (f(x,y)) = rect(u) rect(v)

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman