Line 1: Line 1:
 
=Proof that <math>I(θ) = E[(s(θ;X))^2]</math>=
 
=Proof that <math>I(θ) = E[(s(θ;X))^2]</math>=
Recall that:
+
Using the definition of Variance, as proved below:
 
<div style="margin-left: 3em;">
 
<div style="margin-left: 3em;">
 
<math>
 
<math>
Line 6: Line 6:
 
\bar Var(Y) &= E[(Y-E(Y))^2]\\
 
\bar Var(Y) &= E[(Y-E(Y))^2]\\
 
&= E[Y^2-2YE[Y]+(E[Y])^2]\\
 
&= E[Y^2-2YE[Y]+(E[Y])^2]\\
&= \frac{\mu_0}{2 \pi a \cdot b}
+
&= E[Y^2]-2(E[Y])^2+(E[Y])^2\\
 +
&= E[Y^2] - (E[Y])^2
 
\end{align}
 
\end{align}
 
</math>
 
</math>
 
</div>
 
</div>

Revision as of 21:57, 6 December 2020

Proof that $ I(θ) = E[(s(θ;X))^2] $

Using the definition of Variance, as proved below:

$ \begin{align} \bar Var(Y) &= E[(Y-E(Y))^2]\\ &= E[Y^2-2YE[Y]+(E[Y])^2]\\ &= E[Y^2]-2(E[Y])^2+(E[Y])^2\\ &= E[Y^2] - (E[Y])^2 \end{align} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch