Line 1: Line 1:
 
Since all the <math>f_{n}</math> are AC, there exists <math>f_{n}^{'}</math> such that <math>f_{n}(x)=f_{n}(x)-f_{n}(0)=\int_{0}^{x}f_{n}^{'}(t)dt</math> and <math>f_{n}^{'}</math> are nonnegative almost everywhere.  
 
Since all the <math>f_{n}</math> are AC, there exists <math>f_{n}^{'}</math> such that <math>f_{n}(x)=f_{n}(x)-f_{n}(0)=\int_{0}^{x}f_{n}^{'}(t)dt</math> and <math>f_{n}^{'}</math> are nonnegative almost everywhere.  
 
Let <math>g_{n}(x)= \sum_{k=1}^{n}f_{k}(x)=\sum_{1}^{n}\int_{0}^{x}f_{k}^{'}(t)dt=\int_{0}^{x}(\sum_{k=0}^{n}f_{k}^{'}(t))dt </math>
 
  
 
Let <math>h(t)=\sum_{k=1}^{what the hell is this}f_{k}^{'}(t)</math>
 
Let <math>h(t)=\sum_{k=1}^{what the hell is this}f_{k}^{'}(t)</math>
 +
 +
Let <math>g_{n}(x)= \sum_{k=1}^{n}f_{k}(x)=\sum_{1}^{n}\int_{0}^{x}f_{k}^{'}(t)dt=\int_{0}^{x}(\sum_{k=0}^{n}f_{k}^{'}(t))dt </math>
  
 
Lebesgue Monotone Convergence Theorem gives us <math>g(x)=\int_{0}^{x}h(t)dt</math>
 
Lebesgue Monotone Convergence Theorem gives us <math>g(x)=\int_{0}^{x}h(t)dt</math>
 +
 +
Since all the <math>f_{n}</math> are increasing, <math> g </math> is increasing and with <math>g(1)</math> is finite, <math>g</math> is finite everywhere, so <math>g(1)=\int_{0}^{1}h(t)dt</math>.
 +
Conclusion, <math>math</math> is AC.

Revision as of 10:36, 10 July 2008

Since all the $ f_{n} $ are AC, there exists $ f_{n}^{'} $ such that $ f_{n}(x)=f_{n}(x)-f_{n}(0)=\int_{0}^{x}f_{n}^{'}(t)dt $ and $ f_{n}^{'} $ are nonnegative almost everywhere.

Let $ h(t)=\sum_{k=1}^{what the hell is this}f_{k}^{'}(t) $

Let $ g_{n}(x)= \sum_{k=1}^{n}f_{k}(x)=\sum_{1}^{n}\int_{0}^{x}f_{k}^{'}(t)dt=\int_{0}^{x}(\sum_{k=0}^{n}f_{k}^{'}(t))dt $

Lebesgue Monotone Convergence Theorem gives us $ g(x)=\int_{0}^{x}h(t)dt $

Since all the $ f_{n} $ are increasing, $ g $ is increasing and with $ g(1) $ is finite, $ g $ is finite everywhere, so $ g(1)=\int_{0}^{1}h(t)dt $. Conclusion, $ math $ is AC.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett