Line 9: Line 9:
 
Now, let <math>g=|f|^{p{'}}</math>, then <math>w(y)=\mu(\{g>y\} \leq \frac{c_{0}}{y^{p/p{'}}}</math>
 
Now, let <math>g=|f|^{p{'}}</math>, then <math>w(y)=\mu(\{g>y\} \leq \frac{c_{0}}{y^{p/p{'}}}</math>
  
<math>\int_{X}g d\mu = \int_{0}^{\infty}w(y)dy \leq c_{0}\int_{0}^{\infty}\frac{dy}{y^{p}{p{'}}}</math>
+
<math>\int_{X}g d\mu = \int_{0}^{\infty}w(y)dy \leq c_{0}\int_{0}^{\infty}\frac{dy}{y^{p/p{'}}}</math>

Revision as of 16:38, 11 July 2008

The case $ \mu(X)=\infty $ the inequality is true.

Suppose $ \mu(X) $ is finite, we have

Given $ p^{'}=\frac{p+r}{2} $,

$ \int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p} $ by Holder.

Now, let $ g=|f|^{p{'}} $, then $ w(y)=\mu(\{g>y\} \leq \frac{c_{0}}{y^{p/p{'}}} $

$ \int_{X}g d\mu = \int_{0}^{\infty}w(y)dy \leq c_{0}\int_{0}^{\infty}\frac{dy}{y^{p/p{'}}} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett