Line 7: Line 7:
 
<math>\int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p}</math> by Holder.
 
<math>\int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p}</math> by Holder.
  
<math>\int_{X}|f|^{p^{'}} = \int_{0}^{\infty}\mu(\{|f|>y^{\frac{p}{p^{'}}}\})</math>
+
Now,
 +
 
 +
<math>\int_{X}|f|^{p^{'}}(\mu(X)</math>

Revision as of 16:25, 11 July 2008

The case $ \mu(X)=\infty $ the inequality is true.

Suppose $ \mu(X) $ is finite, we have

Given $ p^{'}=\frac{p+r}{2} $,

$ \int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p} $ by Holder.

Now,

$ \int_{X}|f|^{p^{'}}(\mu(X) $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn