Revision as of 14:43, 11 July 2008 by Dvtran (Talk)

a) Notice that $ \mu(\{|f|>0\})>0 $, so we have

$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $

Taking the limit of both side as $ n $ go to infinity, we get

$ \lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty} $

Let $ M<||f||_{\infty} $, and $ E=\{|f|>M\} $, then

$ \lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} = M $

So, $ (\int_{X}|f|^{n})^{1/n} \geq (\mu(X)||f||_{\infty})^{1/n} $

and we have the identity.

b)

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett