(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:7b_Old Kiwi.jpg]]
+
[[Image:7b_Old Kiwi.jpg|400px|]]
  
 
Let <math> g(t) = \left ( \frac{dz}{dt} \right ) </math>
 
Let <math> g(t) = \left ( \frac{dz}{dt} \right ) </math>
  
[[Image:7b1_Old Kiwi.jpg]]
+
[[Image:7b1_Old Kiwi.jpg|400px|]]
 +
[[Image:7b2_Old Kiwi.jpg|400px|]]
  
 
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>
 
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>
 +
 +
But <math> g_k = m_k + n_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) </math>
 +
 +
<math> \therefore g_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) (-1)^k \right) </math>
 +
 +
But we had taken the derivative of z(t) to get g(t) (and hence <math> g_k </math>).
 +
<math> \therefore z_k = \left ( \frac{g_k}{jk\omega_o} \right ) </math>
 +
 +
<math> z_k = \left( \frac { \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) }{jk\pi/2} \right) </math>
 +
 +
<math> z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k) ~~\forall ~k ~\ne ~0 </math>
 +
 +
<math> g_o = \frac {2t_{1m}}{T_m} + \frac {2t_{1n}}{T_n} </math>
 +
 +
<math> \therefore g_o = 0.5 - 0.5 ~~~and  \therefore z_o = 0 </math>

Latest revision as of 12:45, 1 July 2008

7b Old Kiwi.jpg

Let $ g(t) = \left ( \frac{dz}{dt} \right ) $

7b1 Old Kiwi.jpg 7b2 Old Kiwi.jpg

Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

But $ g_k = m_k + n_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

$ \therefore g_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) (-1)^k \right) $

But we had taken the derivative of z(t) to get g(t) (and hence $ g_k $). $ \therefore z_k = \left ( \frac{g_k}{jk\omega_o} \right ) $

$ z_k = \left( \frac { \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) }{jk\pi/2} \right) $

$ z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k) ~~\forall ~k ~\ne ~0 $

$ g_o = \frac {2t_{1m}}{T_m} + \frac {2t_{1n}}{T_n} $

$ \therefore g_o = 0.5 - 0.5 ~~~and \therefore z_o = 0 $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva