(New page: ==Problem 7 Part b== Image:7b.jpg Let <math> g(t) = \left ( \frac{dz}{dt} \right ) </math> Image:7b1.jpg Image:7b2.jpg Therefore, <math> m_k = \left ( \...)
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Problem 7 Part b==
+
[[Category: ECE]]
[[Image:7b.jpg|400px|]]
+
[[Category: ECE 301]]
 +
[[Category: Summer]]
 +
[[Category: 2008]]
 +
[[Category: asan]]
 +
[[Category: Exams]]
 +
[[Image:ECE301Summer2008_San_Exam1_7b.jpg|400px|]]
  
 
Let <math> g(t) = \left ( \frac{dz}{dt} \right ) </math>
 
Let <math> g(t) = \left ( \frac{dz}{dt} \right ) </math>
  
[[Image:7b1.jpg|400px|]]
+
[[Image:ECE301Summer2008_San_Exam_7b1.jpg|400px|]]
[[Image:7b2.jpg|400px|]]
+
[[Image:ECE301Summer2008_San_Exam1_7b2.jpg|400px|]]
  
 
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>
 
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>

Latest revision as of 11:01, 21 November 2008

ECE301Summer2008 San Exam1 7b.jpg

Let $ g(t) = \left ( \frac{dz}{dt} \right ) $

ECE301Summer2008 San Exam 7b1.jpg ECE301Summer2008 San Exam1 7b2.jpg

Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) , n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

But $ g_k = m_k + n_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

$ \therefore g_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) + \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) (-1)^k \right) $

But we had taken the derivative of z(t) to get g(t) (and hence $ g_k $). $ \therefore z_k = \left ( \frac{g_k}{jk\omega_o} \right ) $

$ z_k = \left( \frac { \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) * (1 - (-1)^k) }{jk\pi/2} \right) $

$ z_k = \frac {2}{j} \left( \frac {1}{(k\pi)^2} \sin ( \frac {k\pi}{2} ) \right) * (1 - (-1)^k) ~~\forall ~k ~\ne ~0 $

$ g_o = \frac {2t_{1m}}{T_m} + \frac {2t_{1n}}{T_n} $

$ \therefore g_o = 0.5 - 0.5 ~~~and \therefore z_o = 0 $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett