Line 14: Line 14:
 
Since x(t) = 0 when t < 1:
 
Since x(t) = 0 when t < 1:
  
y(t) = 0 for t < 1
+
<math>y(t) = 0\,</math> for t < 1

Revision as of 12:32, 30 June 2008

We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.

$ y(t) = h(t) * x(t) = \int_{-\infty}^\infty h(\tau)x(t - \tau)d(\tau) $

Plugging in the given x(t) and h(t) values results in:

$ y(t) = \int_{-\infty}^\infty e^{-\tau}u(\tau)u(t - \tau - 1)d(\tau) $

$ = \int_0^\infty e^{-\tau}u(t - \tau - 1)d(\tau) $

$ = \int_0^{t-1} e^{-\tau}d(\tau) = 1 - e^{-(t - 1)} $ for t > 1


Since x(t) = 0 when t < 1:

$ y(t) = 0\, $ for t < 1

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett