Line 13: Line 13:
  
 
     <math>
 
     <math>
     \begin{align}ax_{1}[n]+bx_{2}[n] \rightarrow ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]
+
     \begin{align}ax_{1}[n]+bx_{2}[n] &\rightarrow ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]
                         = a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])
+
                         &= a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])
                         = ay_{1}[n]+by_{2}[n]  \therefore System is linear
+
                         &= ay_{1}[n]+by_{2}[n]  \therefore System is linear
 
     \end{align}
 
     \end{align}
 
     </math>
 
     </math>

Revision as of 16:54, 30 June 2008

(a) Derive the condition for which the discrete time complex exponetial signal x[n] is periodic.

 $ x[n] = e^{jw_{o}n} $         
 $ x[n] = x[n+N] = e^{jw_{o}(n+N)} = e^{jw_{o}n}e^{jw_{o}N} $
 to be periodic 
 $ e^{jw_{o}N} = 1 = e^{j2\pi k} $
 $ \therefore w_{o}N = 2\pi k $
 $ \Rightarrow \frac{w_{o}}{2\pi} = \frac{K}{N} \Rightarrow $Rational number
 $ \therefore \frac{w_{o}}{2\pi} $ shold be a rational number

(b) Show that the system described by

   $ y[n] = x[n] + x[n+1] + x[n+2] $ is a LTI system.
   $      \begin{align}ax_{1}[n]+bx_{2}[n] &\rightarrow ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]                         &= a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])                         &= ay_{1}[n]+by_{2}[n]  \therefore System is linear     \end{align}      $


   y_{1}[n-n_{0}] = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2]
   Let x_{2} = x_{1}[n-n_{0}]
     x_{2}[n] \rightarrow x_{2}[n]+x_{2}[n+1]+x_{2}[n+2]
   = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2] = y_{1}[n-n_{0}]
   \therefore  System is time-variant

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett