(11 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
[[Category:Formulas]]
 +
[[Category:probability]]
 +
 +
<center><font size= 4>
 +
'''[[Collective_Table_of_Formulas|Collective Table of Formulas]]'''
 +
</font size>
 +
 +
Probability Formulas
 +
 +
click [[Collective_Table_of_Formulas|here]] for [[Collective_Table_of_Formulas|more formulas]]
 +
 +
</center>
 +
 +
----
 
{|
 
{|
 
|-
 
|-
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 120%;" colspan="2" |  
+
! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Probability Formulas
 
|-
 
|-
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Properties of Probability Functions
+
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Properties of Probability Functions
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring)  
 
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring)  
Line 22: Line 36:
 
| align="right" style="padding-right: 1em;" | Total Probability Law  
 
| align="right" style="padding-right: 1em;" | Total Probability Law  
 
| <math>\,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\,</math>  
 
| <math>\,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\,</math>  
<math> \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }.</math>
+
<math> \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }.</math>
  
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Bayes Theorem  
 
| align="right" style="padding-right: 1em;" | Bayes Theorem  
 
| <math>\,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }.</math>
 
| <math>\,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }.</math>
|}
 
 
{|
 
 
|-
 
|-
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | Expectation and Variance of Random Variables
+
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Expectation and Variance of Random Variables
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Binomial random variable with parameters n and p  
 
| align="right" style="padding-right: 1em;" | Binomial random variable with parameters n and p  
Line 44: Line 55:
 
| align="right" style="padding-right: 1em;" | Uniform random variable over (a,b)
 
| align="right" style="padding-right: 1em;" | Uniform random variable over (a,b)
 
| <math>\,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\,</math>  
 
| <math>\,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\,</math>  
 +
|-
 +
| align="right" style="padding-right: 1em;" | Gaussian random variable with parameter <math>\mu \mbox{ and } \sigma^2</math>
 +
| <math>\,E[X] = \mu,\ \ Var(X) = \sigma^2\,</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Exponential random variable with parameter <math>\lambda</math>
 +
| <math>\,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\,</math>
 
|}
 
|}
  
 
----
 
----
 
+
==Relevant Courses==
 +
*[[ECE600|ECE600]]
 +
*[[ECE302|ECE302]]
 +
----
 
[[Collective Table of Formulas|Back to Collective Table]]  
 
[[Collective Table of Formulas|Back to Collective Table]]  
  
 
[[Category:Formulas]]
 
[[Category:Formulas]]

Latest revision as of 12:54, 3 March 2015


Collective Table of Formulas

Probability Formulas

click here for more formulas


Probability Formulas
Properties of Probability Functions
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
The intersection of two independent events A and B $ \,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\, $
The union of two events A and B (i.e. either A or B occurring) $ \,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\, $
The union of two mutually exclusive events A and B $ \,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\, $
Event A occurs given that event B has occurred $ \,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\, $
Total Probability Law $ \,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\, $

$ \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }. $

Bayes Theorem $ \,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }. $
Expectation and Variance of Random Variables
Binomial random variable with parameters n and p $ \,E[X] = np,\ \ Var(X) = np(1-p)\, $
Poisson random variable with parameter $ \lambda $ $ \,E[X] = \lambda,\ \ Var(X) = \lambda\, $
Geometric random variable with parameter p $ \,E[X] = \frac{1}{p},\ \ Var(X) = \frac{1-p}{p^2}\, $
Uniform random variable over (a,b) $ \,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\, $
Gaussian random variable with parameter $ \mu \mbox{ and } \sigma^2 $ $ \,E[X] = \mu,\ \ Var(X) = \sigma^2\, $
Exponential random variable with parameter $ \lambda $ $ \,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\, $

Relevant Courses


Back to Collective Table

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch