Line 45: Line 45:
  
 
so ROC of X(z) is all complex number.
 
so ROC of X(z) is all complex number.
 +
 +
 +
===Answer 3===
 +
First two axiom need to be prove:
 +
 +
<math>Z(\delta [n]) = \sum_{n=-\infty}^{\infty}\delta[n]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n]z^{0} = z^0 = 1, ROC = C </math>
 +
 +
<math>Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] </math>
 +
 +
Observe the original function
 +
 +
<math>x\left[ n \right]= n u[n]-n u[n-3] = n(u[n] - u[n-3]) = n(\delta[n] + \delta[n-1] + \delta[n-2]) = 0\delta[n] + 1\delta[n-1] + 2\delta[n-2]</math>
 +
 +
so by two axioms proved above, with the linearity property,
 +
 +
<math>X(z) = Z\left( x[n] \right) =Z\left( 0\delta[n] + 1\delta[n-1] + 2\delta[n-2]\right) = Z\left( 0\delta[n]\right) + Z\left( 1\delta[n-1]\right) + Z\left( 2\delta[n-2]\right) = z^{-1} + 2z^{-2}
 +
</math>
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Revision as of 10:01, 10 September 2011

Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n u[n]-n u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Begin with the definition of a Z-Transform.

$ X(z) = \sum_{n=-\infty}^{\infty}(n u[n]-n u[n-3])z^{-n} $

Simplify a little. (pull out the n and realize $ u[n]-u[n-3] $ is only non-zero for 0, 1, and 2.)

$ X(z) = \sum_{n=0}^{2}n z^{-n} $

Then we have a simple case of evaluating for 3 points.

$ \begin{align} X(z) &= 0 z^{-0} + 1 z^{-1} + 2 z^{-2} \\ &= \frac{z+2}{z^2} \end{align} $

Answer 2

$ Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n} $

when n=0,1,2, x[n] is n; otherwise x[n]=0. So:

$ x(z)=0z^{-0}+1z^{-1}+2z^{-2}=\frac{1}{z}+\frac{2}{z^2} $ with ROC=all finite complex number.

test for infinity:

$ X(\frac{1}{z})=z+z^2 $

when z=0,$ X(\frac{1}{z}) $converges

X(z) converges at $ z=\infty $

so ROC of X(z) is all complex number.


Answer 3

First two axiom need to be prove:

$ Z(\delta [n]) = \sum_{n=-\infty}^{\infty}\delta[n]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n]z^{0} = z^0 = 1, ROC = C $

$ Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] $

Observe the original function

$ x\left[ n \right]= n u[n]-n u[n-3] = n(u[n] - u[n-3]) = n(\delta[n] + \delta[n-1] + \delta[n-2]) = 0\delta[n] + 1\delta[n-1] + 2\delta[n-2] $

so by two axioms proved above, with the linearity property,

$ X(z) = Z\left( x[n] \right) =Z\left( 0\delta[n] + 1\delta[n-1] + 2\delta[n-2]\right) = Z\left( 0\delta[n]\right) + Z\left( 1\delta[n-1]\right) + Z\left( 2\delta[n-2]\right) = z^{-1} + 2z^{-2} $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett