(13 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
[[Category:ECE438Fall2011Boutin]]
 
[[Category:ECE438Fall2011Boutin]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
= Z-transform computation =
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Computing a z-transform
 +
 
 +
</center>
 +
----
 +
==Question==
 
Compute the compute the z-transform (including the ROC) of the following DT signal:
 
Compute the compute the z-transform (including the ROC) of the following DT signal:
  
Line 12: Line 20:
 
==Share your answers below==
 
==Share your answers below==
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 +
:<span style="color:orange">Instructor's comments: Note that it is not a good idea to write the z-transform as two infinite geometric sums... -pm</span>
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Line 29: Line 38:
 
\end{align}</math>
 
\end{align}</math>
  
 +
:<span style="color:green">TA's comments: What about the ROC?</span>
 +
:<span style="color:orange">Instructor's comments: Don't forget to check wether z=infinity is part of the ROC. -pm</span>
 
=== Answer 2===
 
=== Answer 2===
 
<math>Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n}</math>
 
<math>Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n}</math>
Line 34: Line 45:
 
when n=0,1,2, x[n] is n; otherwise x[n]=0. So:
 
when n=0,1,2, x[n] is n; otherwise x[n]=0. So:
  
<math>x(z)=0z^{-0}+1z^{-1}+2z^{-2}=\frac{1}{z}+\frac{2}{z^2}</math>
+
<math>x(z)=0z^{-0}+1z^{-1}+2z^{-2}=\frac{1}{z}+\frac{2}{z^2}</math> with ROC=all finite complex number except 0.
 +
 
 +
test for infinity:
 +
 
 +
<math>X(\frac{1}{z})=z+z^2</math>
 +
 
 +
when z=0,<math>X(\frac{1}{z})</math>converges
 +
 
 +
X(z) converges at <math>z=\infty</math>
 +
 
 +
so ROC of X(z) is all complex number except 0.
 +
 
 +
 
 +
===Answer 3===
 +
First the axiom need to be prove:
 +
 
 +
<math>Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] </math>
 +
 
 +
Observe the original function
 +
 
 +
<math>x\left[ n \right]= n u[n]-n u[n-3] = n(u[n] - u[n-3]) = n(\delta[n] + \delta[n-1] + \delta[n-2]) = 0\delta[n] + 1\delta[n-1] + 2\delta[n-2]</math>
 +
 
 +
so by two axioms proved above, with the linearity property,
 +
 
 +
<math>X(z) = Z\left(x[n]\right) =Z\left(\delta[n-1]+2\delta[n-2]\right) =  Z\left(\delta[n-1]\right)+Z\left(2\delta[n-2]\right) = z^{-1}+2z^{-2}, ROC = C/[0]
 +
</math>
 +
:<span style="color:orange">Instructor's comments: When you write "C" do you mean the finite z-plane only? Note that you need to check convergence at the point z=infinity separately. -pm </span>
 +
===Answer 4===
 +
<math>X[n] = nu[n] - nu[n-3]</math>
 +
 
 +
<math> X(z) = \sum_{n=0}^{2}n z^{-n}</math> =  0 + z^{-1} + 2*Z^{-2}
 +
 
 +
  ROC z not equal to 1
 +
:<span style="color:orange">Instructor's comments: How about z=infinity? Is that point in the ROC? -pm</span>
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Latest revision as of 12:46, 26 November 2013

Practice Question on "Digital Signal Processing"

Topic: Computing a z-transform


Question

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n u[n]-n u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!

Instructor's comments: Note that it is not a good idea to write the z-transform as two infinite geometric sums... -pm

Answer 1

Begin with the definition of a Z-Transform.

$ X(z) = \sum_{n=-\infty}^{\infty}(n u[n]-n u[n-3])z^{-n} $

Simplify a little. (pull out the n and realize $ u[n]-u[n-3] $ is only non-zero for 0, 1, and 2.)

$ X(z) = \sum_{n=0}^{2}n z^{-n} $

Then we have a simple case of evaluating for 3 points.

$ \begin{align} X(z) &= 0 z^{-0} + 1 z^{-1} + 2 z^{-2} \\ &= \frac{z+2}{z^2} \end{align} $

TA's comments: What about the ROC?
Instructor's comments: Don't forget to check wether z=infinity is part of the ROC. -pm

Answer 2

$ Z(x[n])= \sum_{n=-\infty}^{\infty}x[n]z^{-n}= \sum_{n=-\infty}^{\infty}n(u[n]- u[n-3])z^{-n} $

when n=0,1,2, x[n] is n; otherwise x[n]=0. So:

$ x(z)=0z^{-0}+1z^{-1}+2z^{-2}=\frac{1}{z}+\frac{2}{z^2} $ with ROC=all finite complex number except 0.

test for infinity:

$ X(\frac{1}{z})=z+z^2 $

when z=0,$ X(\frac{1}{z}) $converges

X(z) converges at $ z=\infty $

so ROC of X(z) is all complex number except 0.


Answer 3

First the axiom need to be prove:

$ Z(\delta [n- n_0]) = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n} = \sum_{n=-\infty}^{\infty}\delta[n-n_0]z^{-n_0} = z^{-n_0}, ROC = C/[0] $

Observe the original function

$ x\left[ n \right]= n u[n]-n u[n-3] = n(u[n] - u[n-3]) = n(\delta[n] + \delta[n-1] + \delta[n-2]) = 0\delta[n] + 1\delta[n-1] + 2\delta[n-2] $

so by two axioms proved above, with the linearity property,

$ X(z) = Z\left(x[n]\right) =Z\left(\delta[n-1]+2\delta[n-2]\right) = Z\left(\delta[n-1]\right)+Z\left(2\delta[n-2]\right) = z^{-1}+2z^{-2}, ROC = C/[0] $

Instructor's comments: When you write "C" do you mean the finite z-plane only? Note that you need to check convergence at the point z=infinity separately. -pm

Answer 4

$ X[n] = nu[n] - nu[n-3] $

$ X(z) = \sum_{n=0}^{2}n z^{-n} $ = 0 + z^{-1} + 2*Z^{-2}

 ROC z not equal to 1
Instructor's comments: How about z=infinity? Is that point in the ROC? -pm

Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood