(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<br>  
+
<center><font size= 4>
 
+
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
= [[:Category:Problem solving|Practice Question]], [[ECE438]] Fall 2013, [[User:Mboutin|Prof. Boutin]]  =
+
</font size>
  
On computing the inverse z-transform of a discrete-time signal.
+
Topic: Computing an inverse z-transform
  
 +
</center>
 
----
 
----
 +
==Question==
  
 
Compute the inverse z-transform of  
 
Compute the inverse z-transform of  
Line 23: Line 25:
 
=== Answer 1  ===
 
=== Answer 1  ===
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
Line 40: Line 42:
  
 
<span class="texhtml">''x''[''n''] = ''u''[ − ''n'']( − 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)</span>  
 
<span class="texhtml">''x''[''n''] = ''u''[ − ''n'']( − 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)</span>  
 +
 +
:<span style="color:blue"> Grader's comment: Partial Fractions splitting is wrong </span>
  
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Kyungjun Kim
 
 
 
Using a partial fraction expansion, we can change the original equation to  
 
Using a partial fraction expansion, we can change the original equation to  
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> Where A = 1, B = -1, so we get  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> Where A = 1, B = -1, so we get <span style="color:green"> (Instructor's comment: You can skip this explanation and write the expansion directly)</span>
  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
  
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of  
+
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of <span style="color:green"> (Instructor's comment: No need to explain this.)</span>
  
<math> \frac{1}{1-r} </math>, which is equal to <math> \sum_{n=0}^{+\infty} (\frac{1}{r})^n </math>  
+
<math> \frac{1}{1-r} </math>, which is equal to <math> \sum_{n=0}^{+\infty} (\frac{1}{r})^n </math> <span style="color:green"> (Instructor's comment: This is not true in general: only when |r|<1)</span>
  
 
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>  
 
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>  
Line 68: Line 69:
  
 
<span class="texhtml">''x''[''n''] = ''u''[ − ''n'']( − 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)</span>  
 
<span class="texhtml">''x''[''n''] = ''u''[ − ''n'']( − 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)</span>  
 +
 +
:<span style="color:blue"> Grader's comment: Partial Fractions splitting is wrong </span>
  
 
=== Answer 3  ===
 
=== Answer 3  ===
 
By Yeong Ho Lee
 
 
 
First, using partial fraction we get..  
 
First, using partial fraction we get..  
  
<math> X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math> X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
A(2-z) + B(3-z) = 1  
+
A(2-z) + B(3-z) = 1
  
 
let z=2, then B=1  
 
let z=2, then B=1  
  
let z=3, then A=-1  
+
let z=3, then A=-1 <span style="color:green"> (Instructor's comment: You do not need to explain how you got the A and the B. )</span>
  
 
<math> = -\frac{1}{3-z}+\frac{1}{2-z}</math>  
 
<math> = -\frac{1}{3-z}+\frac{1}{2-z}</math>  
Line 93: Line 93:
 
now let n = -k  
 
now let n = -k  
  
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k}</math>  
+
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k}</math> <span style="color:green"> (Instructor's comment: Your sum is over n, but the expression depends on k.)</span>
  
 
by comparison with z-transfrom formula  
 
by comparison with z-transfrom formula  
Line 102: Line 102:
  
 
<br>  
 
<br>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 4  ===
 
=== Answer 4  ===
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
 
<math>= -\frac{1}{3-z} - \frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z} - \frac{1}{2-z}</math>  
Line 122: Line 124:
  
 
<span class="texhtml">''x''[''n''] = ( − 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)''u''[ − ''n'']</span>  
 
<span class="texhtml">''x''[''n''] = ( − 3<sup>''n'' − 1</sup> − 2<sup>''n'' − 1</sup>)''u''[ − ''n'']</span>  
 +
  
 
<br>  
 
<br>  
 +
 +
:<span style="color:blue"> Grader's comment: Partial Fractions splitting is wrong </span>
  
 
=== Answer 5  ===
 
=== Answer 5  ===
Line 129: Line 134:
 
by partical fraction, we get,  
 
by partical fraction, we get,  
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
 
<math>= -\frac{1}{3-z}+\frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z}+\frac{1}{2-z}</math>  
Line 146: Line 151:
  
 
So, x[n] = (−3<sup>n-1</sup>+2<sup>n-1</sup>)u[-n] <br>  
 
So, x[n] = (−3<sup>n-1</sup>+2<sup>n-1</sup>)u[-n] <br>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
 +
 +
 +
=== Answer 6  ===
 +
 +
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
 +
 +
<math> = \frac{1}{2-z}-\frac{1}{3-z}</math>
 +
 +
<math> = \frac{1}{2}\frac{1}{1-\frac{z}{2}}-\frac{1}{3}\frac{1}{1-\frac{z}{3}}</math>
 +
 +
By the geometric series formula,<br>
 +
 +
<math>X(z) = \frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n - \frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n</math>
 +
 +
<math> = \sum_{n=0}^{+\infty}(\frac{1}{2}(\frac{1}{2})^n - \frac{1}{3}(\frac{1}{3})^n)z^n</math>
 +
 +
<math> = \sum_{n=-\infty}^{+\infty}u[n]((\frac{1}{2})^{n+1} - (\frac{1}{3})^{n+1})z^n</math>
 +
 +
Substituting k = -n for n gives,<br>
 +
 +
<math>X(z) = \sum_{k=-\infty}^{+\infty}u[-k](\frac{1}{2}^{-k+1} - \frac{1}{3}^{k+1})z^{-k}</math>
 +
 +
<math> = \sum_{k=-\infty}^{+\infty}u[-k](2^{k-1} - 3^{k-1})z^{-k}</math>
 +
 +
By comparison with the Z-transform formula,<br>
 +
 +
x[n] = u[-n](2<sup>n-1</sup>-3<sup>n-1</sup>)<br>
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
 +
 +
=== Answer 7  ===
 +
<math>X(z) =\frac{1}{(3-z)(2-z)}</math>
 +
 +
<math>= \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
 +
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>
 +
 +
<math>= -\frac{1}{3}*(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}*(\frac{1}{1-\frac{z}{2}})</math>  <span style="color:green"> (Instructor's comment: Be careful! You do not mean convolution here, do you? Then you should use <math>\times</math> instead of <math>*</math>.)</span>
 +
 +
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n</math>
 +
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{1}{3})^n(z)^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{1}{2})^n(z)^n</math>
 +
 +
substituting k for -n:
 +
 +
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty}3^{k} z^{-k}-\frac{1}{2}\sum_{n=0}^{+\infty}2^{k}z^{-k}</math>
 +
 +
Using the Z transform tables to find the common transformation: <span style="color:green"> (Instructor's comment: I don't understand what you mean. You should rephrase this.)</span>
 +
 +
x[n] = (−3^(n−1))u[−n] - (2^(n−1))u[− n]
 +
 +
:<span style="color:blue"> Grader's comment: Partial Fractions splitting is wrong </span>
 +
  
 
[[2013 Fall ECE 438 Boutin|Back to ECE438 Fall 2013 Prof. Boutin]]  
 
[[2013 Fall ECE 438 Boutin|Back to ECE438 Fall 2013 Prof. Boutin]]  
  
 
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] [[Category:Inverse_z-transform]]
 
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] [[Category:Inverse_z-transform]]

Latest revision as of 12:55, 26 November 2013

Practice Question on "Digital Signal Processing"

Topic: Computing an inverse z-transform


Question

Compute the inverse z-transform of

$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad |z|<2 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

by comparison with z-transform formula

x[n] = u[ − n]( − 3n − 1 − 2n − 1)

Grader's comment: Partial Fractions splitting is wrong

Answer 2

Using a partial fraction expansion, we can change the original equation to

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ Where A = 1, B = -1, so we get (Instructor's comment: You can skip this explanation and write the expansion directly)

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of (Instructor's comment: No need to explain this.)

$ \frac{1}{1-r} $, which is equal to $ \sum_{n=0}^{+\infty} (\frac{1}{r})^n $ (Instructor's comment: This is not true in general: only when |r|<1)

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Then let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

Comparing it with z-transform formula, we can get

x[n] = u[ − n]( − 3n − 1 − 2n − 1)

Grader's comment: Partial Fractions splitting is wrong

Answer 3

First, using partial fraction we get..

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

A(2-z) + B(3-z) = 1

let z=2, then B=1

let z=3, then A=-1 (Instructor's comment: You do not need to explain how you got the A and the B. )

$ = -\frac{1}{3-z}+\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n $

now let n = -k

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k} $ (Instructor's comment: Your sum is over n, but the expression depends on k.)

by comparison with z-transfrom formula

x[n] = − 3n − 1u[ − n] + 2n − 1u[ − n]

x[n] = ( − 3n − 1 + 2n − 1)u[ − n]


Grader's comment: Correct Answer

Answer 4

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z} - \frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k $

$ = \sum_{k=0}^{+\infty}[(-\frac{1}{3})(\frac{1}{3})^k + (-\frac{1}{2})(\frac{1}{2})^k]u[k] * z^k $

Substitute k with -n

$ = \sum_{n=-\infty}^{+\infty}[(-\frac{1}{3})3^{-n} + (-\frac{1}{2})2^{-n}]u[-n] * z^{-n} $

Look up Z transform equation on RHEA table and see that X(z) becomes...

x[n] = ( − 3n − 1 − 2n − 1)u[ − n]



Grader's comment: Partial Fractions splitting is wrong

Answer 5

by partical fraction, we get,

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z}+\frac{1}{2-z} $

For $ \quad \text{ROC} \quad |z|<2 $

$ X(z)= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $


$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

assume n=-k.

$ X(z)= -\frac{1}{3}\sum_{k=-\infty}^{0} 3^{k} z^{-k} +\frac{1}{2}\sum_{k=-\infty}^{0} 2^{k}z^{-k} $


$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + \frac{1}{2}2^k]z^{-k} $

So, x[n] = (−3n-1+2n-1)u[-n]

Grader's comment: Correct Answer


Answer 6

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = \frac{1}{2-z}-\frac{1}{3-z} $

$ = \frac{1}{2}\frac{1}{1-\frac{z}{2}}-\frac{1}{3}\frac{1}{1-\frac{z}{3}} $

By the geometric series formula,

$ X(z) = \frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n - \frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n $

$ = \sum_{n=0}^{+\infty}(\frac{1}{2}(\frac{1}{2})^n - \frac{1}{3}(\frac{1}{3})^n)z^n $

$ = \sum_{n=-\infty}^{+\infty}u[n]((\frac{1}{2})^{n+1} - (\frac{1}{3})^{n+1})z^n $

Substituting k = -n for n gives,

$ X(z) = \sum_{k=-\infty}^{+\infty}u[-k](\frac{1}{2}^{-k+1} - \frac{1}{3}^{k+1})z^{-k} $

$ = \sum_{k=-\infty}^{+\infty}u[-k](2^{k-1} - 3^{k-1})z^{-k} $

By comparison with the Z-transform formula,

x[n] = u[-n](2n-1-3n-1)

Grader's comment: Correct Answer

Answer 7

$ X(z) =\frac{1}{(3-z)(2-z)} $

$ = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.) $ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}*(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}*(\frac{1}{1-\frac{z}{2}}) $ (Instructor's comment: Be careful! You do not mean convolution here, do you? Then you should use $ \times $ instead of $ * $.)

$ = -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n $ $ = -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{1}{3})^n(z)^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{1}{2})^n(z)^n $

substituting k for -n:

$ = -\frac{1}{3}\sum_{n=0}^{+\infty}3^{k} z^{-k}-\frac{1}{2}\sum_{n=0}^{+\infty}2^{k}z^{-k} $

Using the Z transform tables to find the common transformation: (Instructor's comment: I don't understand what you mean. You should rephrase this.)

x[n] = (−3^(n−1))u[−n] - (2^(n−1))u[− n]

Grader's comment: Partial Fractions splitting is wrong


Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin