(6 intermediate revisions by 6 users not shown)
Line 2: Line 2:
 
[[Category:ECE438Fall2011Boutin]]
 
[[Category:ECE438Fall2011Boutin]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
= Continuous-time Fourier transform of a complex exponential =
+
[[Category:Fourier transform]]
What is the Fourier transform of <math>x(t)= e^{j \pi t}</math>? Justify your answer.
+
 
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic:  Continuous-time Fourier transform of a complex exponential
 +
 
 +
</center>
 +
----
 +
==Question==
 +
What is the Fourier transform of  
 +
 
 +
<math>x(t)= e^{j \pi t}</math>?  
 +
 
 +
Justify your answer.
 
   
 
   
 
----
 
----
Line 50: Line 64:
 
       \\=\delta (f-\frac{1}{2})  \end{align} </math>
 
       \\=\delta (f-\frac{1}{2})  \end{align} </math>
  
 +
:<span style="color:red">TA's comments: This is an infeasible solution! You cannot integrate a complex exponential over the range from -infinity to infinity. See the first solution for reference. </span>
 
===Answer 5===
 
===Answer 5===
 
Using the inverse fourier transform definition,  
 
Using the inverse fourier transform definition,  
  
<math>\, x(t)=e^{j \pi t}= \frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\,</math>
+
<math>\, x(t)=e^{j \pi t}= \int_{-\infty}^{\infty}\mathcal{X}(f)e^{j2\pi f t} d f\,</math>
 +
 
 +
and the sifting property, we can see that an <math>X(f)</math> that works is
 +
 
 +
<math> \delta (f-\frac{1}{2}) = X(f)</math>
 +
 
 +
===Answer 6===
 +
<math>
 +
\begin{align}
 +
\mathcal{X}(f)&=\int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt \\
 +
&=\int_{-\infty}^{\infty} e^{j\pi t}e^{-j2\pi ft} dt \\
 +
&=\delta \left (f-\frac{1}{2} \right)  \end{align} </math>
 +
 
 +
===Answer 7===
 +
From the inverse Fourier Transform Definition:
 +
 
 +
<math>\, x(t)=e^{j \pi t}= \int_{-\infty}^{\infty}\mathcal{X}(f)e^{j2\pi f t} d f\,</math>
 +
 
 +
After inspection, we can see that need to pluck out only the portion of
 +
<math> e^{j 2\pi f t} </math> where f = <math> 1/2 </math>
 +
 
 +
The sifting property will sift that portion out if a <math> \delta (f-\frac{1}{2}) </math> is used as X(f), so this is the FT of <math> e^{j \pi t} </math>
 +
 
 +
===Answer 8===
 +
 
 +
<math>\begin{align} \mathcal{F}[e^{j\pi t}]=\int_{-\infty}^{\infty} e^{j\pi t}e^{-j2\pi ft} dt
 +
      \\=\int_{-\infty}^{\infty} e^{-j2\pi (f-\frac{1}{2})t} dt
 +
      \\=\delta (f-\frac{1}{2})  \end{align} </math>
 +
 
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Latest revision as of 09:47, 11 November 2013


Practice Question on "Digital Signal Processing"

Topic: Continuous-time Fourier transform of a complex exponential


Question

What is the Fourier transform of

$ x(t)= e^{j \pi t} $?

Justify your answer.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Guess: $ X(f)=\delta (f-\frac{1}{2}) $

Proof:

$ x(t)=\int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta (f-\frac{1}{2})e^{j\pi t} df = e^{j\pi t} \int_{-\infty}^{\infty} \delta (f-\frac{1}{2}) df = e^{j\pi t} $

using the fact that $ \delta (t-T)f(t) = \delta (t-T)f(T) $

Instructor's comments: Nice and clear solution! One can also justify the answer using the shifting property directly, which would save a couple of steps.-pm

Answer 2

$ x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df $

In order for the following to be true, $ x(t)= e^{j \pi t} $

$ X(f) = \delta(f - \frac{1}{2}) $

because

$ x(t) = \int_{-\infty}^{\infty} \delta(f - \frac{1}{2})e^{j2\pi ft} df = e^{j \pi t} $ with careful inspection.


Answer 3

$ x(t)=e^{j2\pi 1/2t}=e^{j\omega_0 t},where \omega_0=1/2. F(e^{j\omega_0 t})=2\pi \delta(\omega-\omega_0),also C\delta(Cn)=\delta(n). so, X(f)=\delta (f-\frac{1}{2}) $

Answer 4

$ \begin{align} \mathcal{F}[e^{j\pi t}]=\int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt \\=\int_{-\infty}^{\infty} e^{j\pi t}e^{-j2\pi ft} dt \\=\int_{-\infty}^{\infty} e^{-j2\pi (f-\frac{1}{2})t} dt \\=\delta (f-\frac{1}{2}) \end{align} $

TA's comments: This is an infeasible solution! You cannot integrate a complex exponential over the range from -infinity to infinity. See the first solution for reference.

Answer 5

Using the inverse fourier transform definition,

$ \, x(t)=e^{j \pi t}= \int_{-\infty}^{\infty}\mathcal{X}(f)e^{j2\pi f t} d f\, $

and the sifting property, we can see that an $ X(f) $ that works is

$ \delta (f-\frac{1}{2}) = X(f) $

Answer 6

$ \begin{align} \mathcal{X}(f)&=\int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt \\ &=\int_{-\infty}^{\infty} e^{j\pi t}e^{-j2\pi ft} dt \\ &=\delta \left (f-\frac{1}{2} \right) \end{align} $

Answer 7

From the inverse Fourier Transform Definition:

$ \, x(t)=e^{j \pi t}= \int_{-\infty}^{\infty}\mathcal{X}(f)e^{j2\pi f t} d f\, $

After inspection, we can see that need to pluck out only the portion of $ e^{j 2\pi f t} $ where f = $ 1/2 $

The sifting property will sift that portion out if a $ \delta (f-\frac{1}{2}) $ is used as X(f), so this is the FT of $ e^{j \pi t} $

Answer 8

$ \begin{align} \mathcal{F}[e^{j\pi t}]=\int_{-\infty}^{\infty} e^{j\pi t}e^{-j2\pi ft} dt \\=\int_{-\infty}^{\infty} e^{-j2\pi (f-\frac{1}{2})t} dt \\=\delta (f-\frac{1}{2}) \end{align} $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva