(5 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
I tried setting 'u' equal to '1+e^x' and 'du' equal to 'e^x dx'.  Anyone know where to go from here? I'm sure there's some kind of manipulation that needs to be pulled off.  I'll tell you if I figure it out.[[User:Gbrizend|Gbrizend]]
 
I tried setting 'u' equal to '1+e^x' and 'du' equal to 'e^x dx'.  Anyone know where to go from here? I'm sure there's some kind of manipulation that needs to be pulled off.  I'll tell you if I figure it out.[[User:Gbrizend|Gbrizend]]
  
Alright, I factored out a <math> e^x </math>. I set 'u' equal to <math> 1+\frac{1}{e^x} </math> and 'du' to <math> -1\frac{1}{e^x} dx </math>.  The problem looks like this: <math> \int \frac{dx}{e^x(1+\frac{1}{e^x})} </math>.  Substitute with u and du.  I got this answer: <math> -Ln|1+\frac{1}{e^x}| + C </math>
+
Alright, I factored out a <math> e^x </math>. I set 'u' equal to <math> 1+\frac{1}{e^x} </math> and 'du' to <math> -1\frac{1}{e^x} dx </math>.  The problem looks like this: <math> \int \frac{dx}{e^x(1+\frac{1}{e^x})} </math>.  Substitute with u and du.  I got this answer: <math> -Ln|1+\frac{1}{e^x}| + C.</math>
 +
 
 +
Good work.  That last integral is easier to look at if you write <math>e^{-x}</math> in place of <math>\frac{1}{e^x}</math>.
 +
In fact, if you multiply the numerator and the denominator by <math>e^{-x}</math>, the integral becomes
 +
 
 +
<math>\int\frac{1}{1+e^{-x}}\ e^{-x}\ dx =\int-\frac{1}{u}\ du,</math>
 +
 
 +
where <math>u=1+e^{-x}</math>.
  
 
Here's another way.  Let <math>u=1+e^x</math>.  Then <math>du=e^x dx</math> and <math>e^x=u-1</math>.  If I multiply
 
Here's another way.  Let <math>u=1+e^x</math>.  Then <math>du=e^x dx</math> and <math>e^x=u-1</math>.  If I multiply
 
and divide by <math>e^x</math> in order to get a <math>du</math> in the numerator, I get
 
and divide by <math>e^x</math> in order to get a <math>du</math> in the numerator, I get
  
<math>\int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x)} = \int\frac{du}{(1-u)u}</math>
+
<math>\int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x)} = \int\frac{du}{(u-1)u}=
 +
\int\left[\frac{1}{u-1}-\frac{1}{u}\right]\ du</math>
  
and this last integral can be computed via integration by parts.
+
via the method of Partial Fractions.

Latest revision as of 07:50, 3 October 2008

Evaluate the integral: $ \int \frac{dx}{1+e^x} $


I tried setting 'u' equal to '1+e^x' and 'du' equal to 'e^x dx'. Anyone know where to go from here? I'm sure there's some kind of manipulation that needs to be pulled off. I'll tell you if I figure it out.Gbrizend

Alright, I factored out a $ e^x $. I set 'u' equal to $ 1+\frac{1}{e^x} $ and 'du' to $ -1\frac{1}{e^x} dx $. The problem looks like this: $ \int \frac{dx}{e^x(1+\frac{1}{e^x})} $. Substitute with u and du. I got this answer: $ -Ln|1+\frac{1}{e^x}| + C. $

Good work. That last integral is easier to look at if you write $ e^{-x} $ in place of $ \frac{1}{e^x} $. In fact, if you multiply the numerator and the denominator by $ e^{-x} $, the integral becomes

$ \int\frac{1}{1+e^{-x}}\ e^{-x}\ dx =\int-\frac{1}{u}\ du, $

where $ u=1+e^{-x} $.

Here's another way. Let $ u=1+e^x $. Then $ du=e^x dx $ and $ e^x=u-1 $. If I multiply and divide by $ e^x $ in order to get a $ du $ in the numerator, I get

$ \int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x)} = \int\frac{du}{(u-1)u}= \int\left[\frac{1}{u-1}-\frac{1}{u}\right]\ du $

via the method of Partial Fractions.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang