Line 11: Line 11:
 
and divide by <math>e^x</math> in order to get a <math>du</math> in the numerator, I get
 
and divide by <math>e^x</math> in order to get a <math>du</math> in the numerator, I get
  
<math>\int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x)} = \int\frac{du}{(1-u)u}</math>
+
<math>\int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x)} = \int\frac{du}{(u-1)u}</math>
  
 
and this last integral can be computed via integration by parts.
 
and this last integral can be computed via integration by parts.

Revision as of 08:10, 30 September 2008

Evaluate the integral: $ \int \frac{dx}{1+e^x} $


I tried setting 'u' equal to '1+e^x' and 'du' equal to 'e^x dx'. Anyone know where to go from here? I'm sure there's some kind of manipulation that needs to be pulled off. I'll tell you if I figure it out.Gbrizend

Alright, I factored out a $ e^x $. I set 'u' equal to $ 1+\frac{1}{e^x} $ and 'du' to $ -1\frac{1}{e^x} dx $. The problem looks like this: $ \int \frac{dx}{e^x(1+\frac{1}{e^x})} $. Substitute with u and du. I got this answer: $ -Ln|1+\frac{1}{e^x}| + C $

Here's another way. Let $ u=1+e^x $. Then $ du=e^x dx $ and $ e^x=u-1 $. If I multiply and divide by $ e^x $ in order to get a $ du $ in the numerator, I get

$ \int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x)} = \int\frac{du}{(u-1)u} $

and this last integral can be computed via integration by parts.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal