Line 7: Line 7:
  
 
Alright, I factored out a <math> e^x </math>. I set 'u' equal to <math> 1+\frac{1}{e^x} </math> and 'du' to <math> -1\frac{1}{e^x} dx </math>.  The problem looks like this: <math> \int \frac{dx}{e^x(1+\frac{1}{e^x})} </math>.  Substitute with u and du.  I got this answer: <math> -Ln|1+\frac{1}{e^x}| + C </math>
 
Alright, I factored out a <math> e^x </math>. I set 'u' equal to <math> 1+\frac{1}{e^x} </math> and 'du' to <math> -1\frac{1}{e^x} dx </math>.  The problem looks like this: <math> \int \frac{dx}{e^x(1+\frac{1}{e^x})} </math>.  Substitute with u and du.  I got this answer: <math> -Ln|1+\frac{1}{e^x}| + C </math>
 +
 +
Here's another way.  Let <math>u=1+e^x</math>.  Then <math>du=e^x dx</math> and <math>e^x=u-1</math>.  If I multiply
 +
and divide by <math>e^x</math> in order to get a <math>du</math> in the numerator, I get
 +
 +
<math>\int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x) = \int\frac{du}{(1-u)u}</math>
 +
 +
and this last integral can be computed via integration by parts.

Revision as of 06:40, 30 September 2008

Evaluate the integral: $ \int \frac{dx}{1+e^x} $


I tried setting 'u' equal to '1+e^x' and 'du' equal to 'e^x dx'. Anyone know where to go from here? I'm sure there's some kind of manipulation that needs to be pulled off. I'll tell you if I figure it out.Gbrizend

Alright, I factored out a $ e^x $. I set 'u' equal to $ 1+\frac{1}{e^x} $ and 'du' to $ -1\frac{1}{e^x} dx $. The problem looks like this: $ \int \frac{dx}{e^x(1+\frac{1}{e^x})} $. Substitute with u and du. I got this answer: $ -Ln|1+\frac{1}{e^x}| + C $

Here's another way. Let $ u=1+e^x $. Then $ du=e^x dx $ and $ e^x=u-1 $. If I multiply and divide by $ e^x $ in order to get a $ du $ in the numerator, I get

$ \int\frac{1}{1+e^x}\ dx = \int \frac{ e^x\,dx}{e^x(1+e^x) = \int\frac{du}{(1-u)u} $

and this last integral can be computed via integration by parts.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang