Line 1: Line 1:
=== <math>e</math> and Trigonometry ===
+
=== <math>e</math> and Trigonometry: Euler's Formula ===
  
 
The Taylor series of <math> e^x </math> is
 
The Taylor series of <math> e^x </math> is
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
<math>
+
<math>\begin{align}
 
   e^x = \sum^{\infty}_{n=0}{\frac{x^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots
 
   e^x = \sum^{\infty}_{n=0}{\frac{x^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots
</math>
+
\end{align}</math>
  
 
Using this equation, it is possible to relate <math>e</math> to the seemingly unrelated worlds of trigonometry and the complex numbers by simply plugging in a complex number, <math>ix</math> for example. This yields:
 
Using this equation, it is possible to relate <math>e</math> to the seemingly unrelated worlds of trigonometry and the complex numbers by simply plugging in a complex number, <math>ix</math> for example. This yields:
Line 12: Line 12:
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 
<math>
 
<math>
   \begin{align} e^ix
+
   \begin{align} e^{ix}
 
       &= \sum^{\infty}_{n=0}{\frac{(ix)^n}{n!}}\\
 
       &= \sum^{\infty}_{n=0}{\frac{(ix)^n}{n!}}\\
 
       &= \sum^{\infty}_{n=0}{\frac{i^nx^n}{n!}}\\
 
       &= \sum^{\infty}_{n=0}{\frac{i^nx^n}{n!}}\\
 
       &= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \cdots\\
 
       &= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \cdots\\
       &= (1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots)\\
+
       &= (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots)\\
 +
      &= \sum^{\infty}_{n=0}{\frac{(-1^nx^{2n}}{(2n)!}} + i\sum^{\infty}_{n=0}{\frac{(-1)^nx^{2n+1}}{(2n+1)!}}\\
 +
      &= \cos(x) + i\sin(x)
 
   \end{align}
 
   \end{align}
 
</math>
 
</math>
  
But by rearranging this, one gets the identity
+
This surprising result was first published by Euler in 1748. It leads to a large number of significant insights regarding all of its parts. The first important corollary is that every nonzero complex number can be written as <math>e^{a+bi}</math>. This follows from <math>\{\cos(x)+i\sin(x) | x \in \mathbb{R}\}</math> being the unit circle: it is obvious that every point can be written as a unit circle point multiplied by a scalar.<br/>
 +
<br/>
 +
This leads to an insight regarding complex multiplication: First, observe that <math>\left|e^{a+bi}\right| = e^a</math>. This indicates that the length and angle of the complex number are directly separated when the number is written as <math>e</math> to a complex number. Let <math>z_1 = e^{a_1+b_1i}</math> and <math>z_2 = e^{a_2+b_2i}</math>. Then <math>z_1\cdot z_2 = e^{a_1+b_1i}\cdot e^{a_2+b_2i} = e^{a_1+a_2} \cdot e^{i(b_1+b_2)}</math>.
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
+
Conceptually, this means that the length of the two points are multiplied to get the length of the new point. A similar thing applies to the points' angles: they are added rather than multiplied. This is an important idea fundamental to intuitively understanding the multiplication of complex numbers.
<math>
+
  e^ix = \sum^{\infty}_{n=0}{\frac{(-x)^{2n}}{(2n)!}} + i\sum^{\infty}_{n=0}{\frac{(-x)^{2n+1}}{(2n+1)!}}
+
</math>
+
  
  

Revision as of 13:59, 2 December 2018

$ e $ and Trigonometry: Euler's Formula

The Taylor series of $ e^x $ is

                $ \begin{align} e^x = \sum^{\infty}_{n=0}{\frac{x^n}{n!}} = 1 + x + \frac{x^2}2 + \frac{x^3}6 + \cdots \end{align} $

Using this equation, it is possible to relate $ e $ to the seemingly unrelated worlds of trigonometry and the complex numbers by simply plugging in a complex number, $ ix $ for example. This yields:

                $ \begin{align} e^{ix} &= \sum^{\infty}_{n=0}{\frac{(ix)^n}{n!}}\\ &= \sum^{\infty}_{n=0}{\frac{i^nx^n}{n!}}\\ &= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \cdots\\ &= (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots)\\ &= \sum^{\infty}_{n=0}{\frac{(-1^nx^{2n}}{(2n)!}} + i\sum^{\infty}_{n=0}{\frac{(-1)^nx^{2n+1}}{(2n+1)!}}\\ &= \cos(x) + i\sin(x) \end{align} $

This surprising result was first published by Euler in 1748. It leads to a large number of significant insights regarding all of its parts. The first important corollary is that every nonzero complex number can be written as $ e^{a+bi} $. This follows from $ \{\cos(x)+i\sin(x) | x \in \mathbb{R}\} $ being the unit circle: it is obvious that every point can be written as a unit circle point multiplied by a scalar.

This leads to an insight regarding complex multiplication: First, observe that $ \left|e^{a+bi}\right| = e^a $. This indicates that the length and angle of the complex number are directly separated when the number is written as $ e $ to a complex number. Let $ z_1 = e^{a_1+b_1i} $ and $ z_2 = e^{a_2+b_2i} $. Then $ z_1\cdot z_2 = e^{a_1+b_1i}\cdot e^{a_2+b_2i} = e^{a_1+a_2} \cdot e^{i(b_1+b_2)} $.

Conceptually, this means that the length of the two points are multiplied to get the length of the new point. A similar thing applies to the points' angles: they are added rather than multiplied. This is an important idea fundamental to intuitively understanding the multiplication of complex numbers.


References:
(Reference 1)
(Reference 2)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn