m
Line 21: Line 21:
 
<span class="texhtml">''x''[''n''] * ''h''[''n''] = ''h''[''n''] * ''x''[''n'']</span>  
 
<span class="texhtml">''x''[''n''] * ''h''[''n''] = ''h''[''n''] * ''x''[''n'']</span>  
  
<math>=\sum_{k=-\infty}^\infty h[k]x[n-k]</math> <math>=\sum_{k=-\infty}^\infty 1/5^k*u[k]*u[k-n-3]</math> <math>=\sum_{k=0}^\infty 1/5^k * u[k-n-3]</math>  
+
<math>=\sum_{k=-\infty}^\infty h[k]x[n-k]</math> <math>=\sum_{k=-\infty}^{\infty} 1/5^k*u[k]*u[k-n-3]</math> <math>=\sum_{k=0}^\infty 1/5^k * u[k-n-3]</math>  
  
There are two cases. Case 1: <math>=\sum_{k=0}^\infty 1/5^k</math> {iff n+3&lt;0 or n&lt;-3} <span class="texhtml"> = ((1 / 5)<sup>0</sup> − (1 / 5)<sup> / </sup>''i''''n''''f''''t''''y'') / (1 − 1 / 5) = 1 / (4 / 5) = 5 / 4</span>
+
There are two cases.  
  
Case 2: <math>=\sum_{k=n+3}^\infty 1/5^k</math> {iff n+3&gt;0 or n&gt;-3} <math>=((1/5)^{n+3} - (1/5)^{\infty + 1})/(1-1/5) = 1/(4*5^{n+2})</math> ([[User:Clarkjv|Clarkjv]] 01:02, 3 February 2011 (UTC))  
+
Case 1 (iff n+3<0 or n<-3):  
 +
<math>=\sum_{k=0}^\infty 1/5^k</math>
 +
<math>=(1-0)/(1-1/5)=5/4</math>
 +
 
 +
Case 2(iff n+3>0 or n>-3):
 +
<math>=\sum_{k=n+3}^\infty 1/5^k</math> <math>=((1/5)^{n+3} - (1/5)^{\infty + 1})/(1-1/5) = 1/(4*5^{n+2})</math> ([[User:Clarkjv|Clarkjv]] 01:02, 3 February 2011 (UTC))  
  
 
=== Answer 2  ===
 
=== Answer 2  ===

Revision as of 21:22, 2 February 2011

Practice Question on Computing the Output of an LTI system by Convolution

The unit impulse response h[n] of a DT LTI system is

$ h[n]= \frac{1}{5^n}u[n]. \ $

Use convolution to compute the system's response to the input

$ x[n]= u[-n-3] \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

x[n] * h[n] = h[n] * x[n]

$ =\sum_{k=-\infty}^\infty h[k]x[n-k] $ $ =\sum_{k=-\infty}^{\infty} 1/5^k*u[k]*u[k-n-3] $ $ =\sum_{k=0}^\infty 1/5^k * u[k-n-3] $

There are two cases.

Case 1 (iff n+3<0 or n<-3): $ =\sum_{k=0}^\infty 1/5^k $ $ =(1-0)/(1-1/5)=5/4 $

Case 2(iff n+3>0 or n>-3): $ =\sum_{k=n+3}^\infty 1/5^k $ $ =((1/5)^{n+3} - (1/5)^{\infty + 1})/(1-1/5) = 1/(4*5^{n+2}) $ (Clarkjv 01:02, 3 February 2011 (UTC))

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett