Line 28: Line 28:
 
</math>
 
</math>
 
===Answer 2===
 
===Answer 2===
Claim that <math>CSFT{e^{j \pi (ax +by)}</math>?
+
Claim that <math>CSFT \{ e^{j \pi (ax +by) }\} = \delta(u-a)\delta(v-b)</math>
 +
 
 +
Proof:
 +
 
 +
<math>iCSFT\{\delta(u-a)\delta(v-b)\} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\delta(u-a)\delta(v-b)e^{2j \pi (ux +vy) }dudv</math>
 +
 
 +
<math>=\int_{-\infty}^{\infty}\delta(u-a)e^{2j \pi (ux) }du      \int_{-\infty}^{\infty}\delta(v-b)e^{2j \pi (vy) }dv = e^{j \pi (ax)} e^{j \pi (by)} = e^{j \pi (ax +by)}</math>
 +
 
 +
Another way is to show by "separality", since
 +
 
 +
<math>f(x,y)=g(x)h(y),g(x) = e^{j \pi (ax)},h(y) =  e^{j \pi (by) } </math>
 +
 
 +
then <math>F(u,v)=G(u)H(v),G(u) = CTFT(f(x)),H(v) = CTFT(h(y))</math>
 +
 
 +
by CTFT pairs,  <math>G(u) = /delta(u-a),H(v) = /delta(v-b)</math>
 +
 
 +
which shows <math>CSFT  \{ e^{j \pi (ax +by) }\} = \delta(u-a)\delta(v-b)</math>,
 +
 
 +
as the same above.
 +
 
  
 
===Answer 3===
 
===Answer 3===

Revision as of 19:12, 12 November 2011


Continuous-space Fourier transform of a complex exponential (Practice Problem)

What is the Continuous-space Fourier transform (CSFT) of $ f(x,y)= e^{j \pi (ax +by) } $?

Justify your answer.



Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy $

$ = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi x(a-2u) }e^{j \pi y(b - 2v) }dxdy $ $ = \frac{1}{j\pi(a-2u)}\frac{1}{j\pi(b-2v)}[e^{j \pi x(a-2u)}e^{j \pi y(b - 2v) }]{-\infty}^{\infty} $ $ = {\infty} $

Answer 2

Claim that $ CSFT \{ e^{j \pi (ax +by) }\} = \delta(u-a)\delta(v-b) $

Proof:

$ iCSFT\{\delta(u-a)\delta(v-b)\} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\delta(u-a)\delta(v-b)e^{2j \pi (ux +vy) }dudv $

$ =\int_{-\infty}^{\infty}\delta(u-a)e^{2j \pi (ux) }du \int_{-\infty}^{\infty}\delta(v-b)e^{2j \pi (vy) }dv = e^{j \pi (ax)} e^{j \pi (by)} = e^{j \pi (ax +by)} $

Another way is to show by "separality", since

$ f(x,y)=g(x)h(y),g(x) = e^{j \pi (ax)},h(y) = e^{j \pi (by) } $

then $ F(u,v)=G(u)H(v),G(u) = CTFT(f(x)),H(v) = CTFT(h(y)) $

by CTFT pairs, $ G(u) = /delta(u-a),H(v) = /delta(v-b) $

which shows $ CSFT \{ e^{j \pi (ax +by) }\} = \delta(u-a)\delta(v-b) $,

as the same above.


Answer 3

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett