Line 1: Line 1:
 +
[[Category:MA598RSummer2009pweigel]]
 +
[[Category:MA598]]
 +
[[Category:math]]
 +
[[Category:problem solving]]
 +
 +
== Problem #7.13, MA598R, Summer 2009, Weigel ==
 +
 
Back to [[The_Pirate's_Booty]]
 
Back to [[The_Pirate's_Booty]]
  
Line 22: Line 29:
  
 
--[[User:Rlalvare|Rlalvare]] 22:42, 28 July 2009 (UTC)
 
--[[User:Rlalvare|Rlalvare]] 22:42, 28 July 2009 (UTC)
 +
----
 +
[[The_Pirate%27s_Booty|Back to the Pirate's Booty]]
 +
 +
[[MA_598R_pweigel_Summer_2009_Lecture_7|Back to Assignment 7]]
 +
 +
[[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]]

Revision as of 05:39, 11 June 2013


Problem #7.13, MA598R, Summer 2009, Weigel

Back to The_Pirate's_Booty

Let $ f\in L^1(\mathbb{R}^n) $. Prove:

a) If $ f\geq 0 $ then $ \|\hat{f}\|_{\infty}=\hat{f}(0)=\|f\|_1 $

b) If $ f $ is continuous at $ 0 $ and $ \hat{f}\geq 0 $ then $ \|\hat{f}\|_1 = f(0) $

Proof: a)

$ \|\hat{f}\|_{\infty} = |\int e^{-ixt}f(t)dt|\leq \int |f(t)|dt = \|f\|_1 = \hat{f}(0) $ (since $ f\geq 0 $)

$ \|\hat{f}\|_{\infty}\geq \hat{f}(0) = \int f(t)dt = \|f\|_1 $ (since $ f\geq 0 $)

b) From the reverse Fourier Transform we know that $ f(t)=\int\hat{f}(x)e^{2\pi ixt}dx $

$ f(0)=\int \hat{f}(x)dx = \|\hat{f}\|_1 $ (since $ \hat{f}\geq 0 $)


(I'm not sure how much of this is correct since I didn't use the continuity of f at 0, just that it's defined there)

--Rlalvare 22:42, 28 July 2009 (UTC)


Back to the Pirate's Booty

Back to Assignment 7

Back to MA598R Summer 2009

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett