Line 11: Line 11:
 
<math>= \int_{R^n} f^*(|x|) e^{-\imath <x e^{-\imath \theta},\xi>} dx</math>
 
<math>= \int_{R^n} f^*(|x|) e^{-\imath <x e^{-\imath \theta},\xi>} dx</math>
  
Now use a change of variables, namely <math>x e^{-\imath \theta} = x</math>, and since this change of variables is given by a rotation (i.e. an orthogonal transformation with Jacobian 1)
+
Now use a change of variables, namely replace <math>x</math> with <math>x e^{-\imath \theta}</math>, and since this change of variables is given by a rotation (i.e. an orthogonal transformation with Jacobian 1)
  
 
<math>= \int_{R^n} f^*(|x e^{-\imath \theta}|) e^{-\imath <x, \xi>} dx</math>
 
<math>= \int_{R^n} f^*(|x e^{-\imath \theta}|) e^{-\imath <x, \xi>} dx</math>

Revision as of 12:19, 27 July 2009

Problem 14

$ \text{Let } f\in C_c^{\infty}(R^n) \text{ be radial. Show that } \widehat{f} \text{ is also radial.} $


Note that f being radial implies that for some $ f^* $, $ f(x) = f^*(|x|) $ for every $ x\in R^n $

$ \widehat{f}\left(\xi e^{\imath \theta}\right) = \int_{R^n} f^*(|x|) e^{-\imath <x,\xi e^{\imath \theta}>} dx $

$ = \int_{R^n} f^*(|x|) e^{-\imath <x e^{-\imath \theta},\xi>} dx $

Now use a change of variables, namely replace $ x $ with $ x e^{-\imath \theta} $, and since this change of variables is given by a rotation (i.e. an orthogonal transformation with Jacobian 1)

$ = \int_{R^n} f^*(|x e^{-\imath \theta}|) e^{-\imath <x, \xi>} dx $

But recall that $ |x e^{-\imath \theta}| = |x| $, so:

$ = \int_{R^n} f^*(|x|) e^{-\imath <x,\xi>} dx = \widehat{f}(\xi) $

Which gives precisely that $ \widehat{f} $ is radial.

Written by Nicholas Stull

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach