(New page: Let <math>f\in L^1(\mathbb{R})</math>. Show that <math>\hat{f}(x)</math> is continuous and <math>\lim_{|x|\to\infty} \hat{f}(x)=0</math>. Proof: To show continuity, we only need to show t...)
 
Line 3: Line 3:
 
Proof: To show continuity, we only need to show that if <math>x_k\to x</math> then <math>\hat{f}(x_k)\to\hat{f}(x)</math>
 
Proof: To show continuity, we only need to show that if <math>x_k\to x</math> then <math>\hat{f}(x_k)\to\hat{f}(x)</math>
  
<math>\lim_{k\to\infty}\hat{f}(x_k)=\lim_{k\to\infty}\int e^{-x_kt}f(t)dt = \int e^{-xt}f(t)dt = \hat{f}(x)</math>  
+
<math>\lim_{k\to\infty}\hat{f}(x_k)=\lim_{k\to\infty}\int e^{-ix_kt}f(t)dt = \int e^{-ixt}f(t)dt = \hat{f}(x)</math>  
  
 
We can pass this limit through the integral since <math>\hat{f}</math> is dominated by <math>f\in L^1</math>
 
We can pass this limit through the integral since <math>\hat{f}</math> is dominated by <math>f\in L^1</math>

Revision as of 15:44, 28 July 2009

Let $ f\in L^1(\mathbb{R}) $. Show that $ \hat{f}(x) $ is continuous and $ \lim_{|x|\to\infty} \hat{f}(x)=0 $.

Proof: To show continuity, we only need to show that if $ x_k\to x $ then $ \hat{f}(x_k)\to\hat{f}(x) $

$ \lim_{k\to\infty}\hat{f}(x_k)=\lim_{k\to\infty}\int e^{-ix_kt}f(t)dt = \int e^{-ixt}f(t)dt = \hat{f}(x) $

We can pass this limit through the integral since $ \hat{f} $ is dominated by $ f\in L^1 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood