(New page: Back to The Pirate's Booty Given that <math>f\in L^1(\mathbb{R})</math> and <math>\int_{\mathbb{R}}\int_{\mathbb{R}}f(4x)f(x+y)dxdy = 1</math>. Calculate <math>\int_{\mathbb{R}}f(x)d...)
 
Line 1: Line 1:
 +
 +
[[Category:MA598RSummer2009pweigel]]
 +
[[Category:MA598]]
 +
[[Category:math]]
 +
[[Category:problem solving]]
 +
 +
== Problem #7.9, MA598R, Summer 2009, Weigel ==
 
Back to [[The Pirate's Booty]]
 
Back to [[The Pirate's Booty]]
  
Line 12: Line 19:
  
 
<math>\Rightarrow \int_{\mathbb{R}}f(x)dx =\pm 2</math>
 
<math>\Rightarrow \int_{\mathbb{R}}f(x)dx =\pm 2</math>
 +
----
 +
[[The_Pirate%27s_Booty|Back to the Pirate's Booty]]
 +
 +
[[MA_598R_pweigel_Summer_2009_Lecture_7|Back to Assignment 7]]
 +
 +
[[MA598R_%28WeigelSummer2009%29|Back to MA598R Summer 2009]]

Revision as of 05:38, 11 June 2013


Problem #7.9, MA598R, Summer 2009, Weigel

Back to The Pirate's Booty

Given that $ f\in L^1(\mathbb{R}) $ and $ \int_{\mathbb{R}}\int_{\mathbb{R}}f(4x)f(x+y)dxdy = 1 $. Calculate $ \int_{\mathbb{R}}f(x)dx $


Proof: Since $ \mathbb{R} $ is $ \sigma $-finite we can apply Fubini's Theorem. Hence,

$ \int_{\mathbb{R}}\int_{\mathbb{R}}f(4x)f(x+y)dxdy =\int_{\mathbb{R}}f(4x)\bigg(\int_{\mathbb{R}}f(x+y)dy\bigg)dx= $ $ \int_{\mathbb{R}}f(4x)dx\cdot \int_{\mathbb{R}}f(y')dy'=\frac{1}{4}\int_{\mathbb{R}}f(x')dx'\cdot \int_{\mathbb{R}}f(y')dy'= $ $ \frac{1}{4}\bigg(\int_{\mathbb{R}}f(x)dx\bigg)^2 = 1 $

$ \Rightarrow \int_{\mathbb{R}}f(x)dx =\pm 2 $


Back to the Pirate's Booty

Back to Assignment 7

Back to MA598R Summer 2009

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett