Line 24: Line 24:
 
Observe that : <math> X(k.2pi/N) = \sum_{n=0}^{N-1} x_{p}[n].e^{-J.2pi.kn/N}</math>, where <math> x_{p}[n] = \sum_{-\infty}^{\infty} x[n-lN]</math> is periodic with N  
 
Observe that : <math> X(k.2pi/N) = \sum_{n=0}^{N-1} x_{p}[n].e^{-J.2pi.kn/N}</math>, where <math> x_{p}[n] = \sum_{-\infty}^{\infty} x[n-lN]</math> is periodic with N  
  
 +
The reason behind this is as follow:
 +
<math> X(k.2p/N) = \sum_{n =-\infty}^{\infty} x[n].e^{-J.2pi.kn/N}</math>
 +
         
 +
        <math> = . . . . . + \sum_{n = -N}^{-1} x[n].e^{-J2pi.k.n/N} + \sum_{n = 0}^{N-1} x[n].e^{-J.2pi.kn/N}</math>
  
 +
        <math> = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x[n].e^{-J.2pi.kn/N}</math>
  
 +
let <math> m = n - lN : </math>
 +
 +
<math> X(k.2pi/N) = \sum_{l=-\infty}^{infty} \sum_{m=0}^{N-1} x[m+lN].e^{-J.2pi.k.(m+lN)/N}</math>
 +
 +
        <math> = \sum_{l=-\infty}^{infty} \sum_{m=0}^{N-1} x[m+lN].e^{-J.2pi.km/N}</math> since <math> e^{-J.2pi.k.l}</math> is always = 1 because k.l is always integer
 +
 +
and <math> e^{J*2pi} = \cos (2*pi) + j \sin (2*pi) = 1</math>
 +
 +
        <math> = \sum_{m = 0}^{N-1}(\sum_{l=-\infty}^{\infty} x[m+lN]).e^{-J.2pi.km/N}</math>
 +
 +
As a result: <math> x_{p}[n] = \sum_{l=-\infty}^{\infty} x(m + lN)</math>
 +
 +
Also Note that <math> x_{p}[n] </math> is the periodic repetition of <math> x[n] </math> if <math> x[n] </math>
 +
has a finite duration of N
  
  
  
 
<math> S_{\tau}(t) = P_{T}(t) = \sum_{K=-\infty}^{\infty} \delta (t - KT)</math> [Eq. 2]
 
<math> S_{\tau}(t) = P_{T}(t) = \sum_{K=-\infty}^{\infty} \delta (t - KT)</math> [Eq. 2]

Revision as of 17:03, 22 September 2009

4) Discrete Fourier Transform

Definition: let x[n] be a DT signal with Period N.

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-J.2pi.kn/N} $

$ x [n] = (1/N) \sum_{k=0}^{N-1} X[k].e^{J.2pi.kn/N} $

Derivation:

Digital signal are :

  • Finite Duration
  • Discrete

So the idea is, we need to discretize (ie sample) the Fourier Transform

$ X(w) = \sum_{n=-\infty}^{\infty} x[n].e^{-Jwn} >^{sampling}> X(k.2pi/N) = \sum x[n].e^{-J2pi.n.k/N} $

Note: if X(w) is band-limited and if N is big enough, we can reconstruct X(w)


Observe that : $ X(k.2pi/N) = \sum_{n=0}^{N-1} x_{p}[n].e^{-J.2pi.kn/N} $, where $ x_{p}[n] = \sum_{-\infty}^{\infty} x[n-lN] $ is periodic with N

The reason behind this is as follow: $ X(k.2p/N) = \sum_{n =-\infty}^{\infty} x[n].e^{-J.2pi.kn/N} $

        $  = . . . . . + \sum_{n = -N}^{-1} x[n].e^{-J2pi.k.n/N} + \sum_{n = 0}^{N-1} x[n].e^{-J.2pi.kn/N} $
        $  = \sum_{l=-\infty}^{\infty} \sum_{n=lN}^{lN+N-1} x[n].e^{-J.2pi.kn/N} $

let $ m = n - lN : $

$ X(k.2pi/N) = \sum_{l=-\infty}^{infty} \sum_{m=0}^{N-1} x[m+lN].e^{-J.2pi.k.(m+lN)/N} $

        $  = \sum_{l=-\infty}^{infty} \sum_{m=0}^{N-1} x[m+lN].e^{-J.2pi.km/N} $ since $  e^{-J.2pi.k.l} $ is always = 1 because k.l is always integer
and $  e^{J*2pi} = \cos (2*pi) + j \sin (2*pi) = 1 $ 
        $  = \sum_{m = 0}^{N-1}(\sum_{l=-\infty}^{\infty} x[m+lN]).e^{-J.2pi.km/N} $

As a result: $ x_{p}[n] = \sum_{l=-\infty}^{\infty} x(m + lN) $

Also Note that $ x_{p}[n] $ is the periodic repetition of $ x[n] $ if $ x[n] $ has a finite duration of N


$ S_{\tau}(t) = P_{T}(t) = \sum_{K=-\infty}^{\infty} \delta (t - KT) $ [Eq. 2]

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett