Line 1: Line 1:
 +
<nowiki>**Reference citations are denoted throughout as (reference #) after the cited information**</nowiki>
 +
- Mark Knight
 +
 +
 
'''Preliminary Definitions'''
 
'''Preliminary Definitions'''
 
----
 
----
Line 9: Line 13:
 
The element <math>g</math> ''normalizes'' <math>N</math> if <math>gNg^{-1} = N</math>.
 
The element <math>g</math> ''normalizes'' <math>N</math> if <math>gNg^{-1} = N</math>.
  
A subgroup <math>N</math> of a group <math>G</math> is said to be ''normal'' if every element of <math>G</math> normalizes <math>N</math>. That is, if <math>gNg^{-1} = N</math> for all g in G.
+
A subgroup <math>N</math> of a group <math>G</math> is said to be ''normal'' if every element of <math>G</math> normalizes <math>N</math>. That is, if <math>gNg^{-1} = N</math> for all g in G. (reference #2)
  
  
Line 20: Line 24:
 
2. <math>gNg^{-1} = N</math> for all <math> g\in G</math>.
 
2. <math>gNg^{-1} = N</math> for all <math> g\in G</math>.
  
3. <math>gN = Ng</math> for all <math> g\in G</math>. That is, the left and right cosets are equal.
+
3. <math>gN = Ng</math> for all <math> g\in G</math>. That is, the left and right cosets are equal. (reference #1)
  
4. <math>N</math> is the kernel of some homomorphism on <math> G </math>.
+
4. <math>N</math> is the kernel of some homomorphism on <math>G</math>. (reference #2)
  
  
The equivalence of (1), (2) and (3) above is proved below:
+
The equivalence of (1), (2) and (3) above is proved here:
  
 
Lemma: If <math> N \le G</math> then <math> (aN)(bN) = abN </math> for all <math> a,b \in G</math> <math> \Leftrightarrow </math> <math> gNg^{-1} = N </math> for all <math> g \in G</math>.  
 
Lemma: If <math> N \le G</math> then <math> (aN)(bN) = abN </math> for all <math> a,b \in G</math> <math> \Leftrightarrow </math> <math> gNg^{-1} = N </math> for all <math> g \in G</math>.  
  
 +
For <math> \Leftarrow </math> we have then <math>(aN)(bN) = a(Nb)N = abNN = abN </math>.
 +
 +
For <math> \Rightarrow </math> then <math>gNg^{-1} \subseteq gNg^{-1}N </math> since <math> 1\in N</math> and by the hypothesis <math>(gN)(g^{-1}N) = gg^{-1}N (=N)</math>. Then we have <math> gNg^{-1} \subseteq N </math> which implies that <math> N\subseteq g^{-1}Ng </math>. Because this result holds for all <math> g \in G</math>, we have <math> N \subseteq gNg^{-1} </math> and the desired result follows. <math> \Box </math> (reference #1)
 +
 +
 +
 +
''' Examples of Normal Subgroups '''
 +
----
 +
 +
1. Every subgroup of an Abelian group is normal because for elements a in G and h in N, ah = ha. (reference #3)
 +
 +
2. The trivial subgroup consisting only of the identity is normal, as is the entire group itself. (refernce #4). If it is the case that {1} and {G} are the only normal subgroups of G, then G is said to be ''simple''. (reference #2)
 +
 +
3. The center of a group is normal because, again, ah = ha for a in G and h in Z(G). (reference #3)
 +
 +
4. The subgroup of rotations in the dihedral groups are normal in the dihedral groups. (reference #3)
  
 +
5. SL (n,R) is normal in GL (n,R) because if A is a nonsingular n by n matrix  and B is n by n with determinant 1, then det<math>ABA^{-1}</math> = <math>detAdetBdetA^{-1}</math> = detB = 1. (reference #1)
  
  
Line 36: Line 57:
 
'''Links to pages on normal subgroups:'''
 
'''Links to pages on normal subgroups:'''
  
(1) http://mathworld.wolfram.com/NormalSubgroup.html
+
- http://mathworld.wolfram.com/NormalSubgroup.html
  
(2) http://eom.springer.de/N/n067690.htm
+
- http://eom.springer.de/N/n067690.htm
  
(3) http://math.ucr.edu/home/baez/normal.html
+
- http://math.ucr.edu/home/baez/normal.html
  
  
 
'''References:'''
 
'''References:'''
  
- http://www.math.uiuc.edu/~r-ash/Algebra/Chapter1.pdf
+
(1) http://www.math.uiuc.edu/~r-ash/Algebra/Chapter1.pdf
  
- Dummit, D.S. & Foote, R.M. (1991). Abstract Algebra. United States: Prentice Hall.
+
(2) Dummit, D.S. & Foote, R.M. (1991). Abstract Algebra. United States: Prentice Hall.
  
- Gallian, J.A. (2010). Contemporary Abstract Algebra. United States: Brooks/Cole.  
+
(3) Gallian, J.A. (2010). Contemporary Abstract Algebra. United States: Brooks/Cole.  
  
- MA 453 lecture notes, Professor Uli Walther
+
(4) MA 453 lecture notes, Professor Uli Walther

Revision as of 15:13, 27 April 2011

**Reference citations are denoted throughout as (reference #) after the cited information** - Mark Knight


Preliminary Definitions


Let $ G $ be a group and $ N $ be a subgroup of $ G $.

The element $ gng^{-1} $ is called the conjugate of $ n\in N $ by $ g $.

The set $ gNg^{-1} =\{ {gng^{-1} | n\in N}\} $ is called the conjugate of $ N $ by $ g $.

The element $ g $ normalizes $ N $ if $ gNg^{-1} = N $.

A subgroup $ N $ of a group $ G $ is said to be normal if every element of $ G $ normalizes $ N $. That is, if $ gNg^{-1} = N $ for all g in G. (reference #2)


Equivalent definitions of Normality


Let $ G $ be a group and $ N $ be a subgroup of $ G $. The following are equivalent:

1. $ gNg^{-1}\subseteq N $ for all $ g\in G $.

2. $ gNg^{-1} = N $ for all $ g\in G $.

3. $ gN = Ng $ for all $ g\in G $. That is, the left and right cosets are equal. (reference #1)

4. $ N $ is the kernel of some homomorphism on $ G $. (reference #2)


The equivalence of (1), (2) and (3) above is proved here:

Lemma: If $ N \le G $ then $ (aN)(bN) = abN $ for all $ a,b \in G $ $ \Leftrightarrow $ $ gNg^{-1} = N $ for all $ g \in G $.

For $ \Leftarrow $ we have then $ (aN)(bN) = a(Nb)N = abNN = abN $.

For $ \Rightarrow $ then $ gNg^{-1} \subseteq gNg^{-1}N $ since $ 1\in N $ and by the hypothesis $ (gN)(g^{-1}N) = gg^{-1}N (=N) $. Then we have $ gNg^{-1} \subseteq N $ which implies that $ N\subseteq g^{-1}Ng $. Because this result holds for all $ g \in G $, we have $ N \subseteq gNg^{-1} $ and the desired result follows. $ \Box $ (reference #1)


Examples of Normal Subgroups


1. Every subgroup of an Abelian group is normal because for elements a in G and h in N, ah = ha. (reference #3)

2. The trivial subgroup consisting only of the identity is normal, as is the entire group itself. (refernce #4). If it is the case that {1} and {G} are the only normal subgroups of G, then G is said to be simple. (reference #2)

3. The center of a group is normal because, again, ah = ha for a in G and h in Z(G). (reference #3)

4. The subgroup of rotations in the dihedral groups are normal in the dihedral groups. (reference #3)

5. SL (n,R) is normal in GL (n,R) because if A is a nonsingular n by n matrix and B is n by n with determinant 1, then det$ ABA^{-1} $ = $ detAdetBdetA^{-1} $ = detB = 1. (reference #1)



Links to pages on normal subgroups:

- http://mathworld.wolfram.com/NormalSubgroup.html

- http://eom.springer.de/N/n067690.htm

- http://math.ucr.edu/home/baez/normal.html


References:

(1) http://www.math.uiuc.edu/~r-ash/Algebra/Chapter1.pdf

(2) Dummit, D.S. & Foote, R.M. (1991). Abstract Algebra. United States: Prentice Hall.

(3) Gallian, J.A. (2010). Contemporary Abstract Algebra. United States: Brooks/Cole.

(4) MA 453 lecture notes, Professor Uli Walther

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett